5.9 Historical Connections

Any study about Ecological Sustainability should acknowledge the positive and negative contributions to this goal by human actions and inaction in the near past of British Columbia. Acts of individuals or governments through the years could be targeted which have had significant effects in contribution in this area.It is probably easier to find examples showing the opposite, but we must attempt to point out the positive and try to encourage more.

  • First Nations, an  integral part of the ecosystem. Cultural practices which ensured sustainability of marine resources must be emphasized.

Problems issues:

  • early fisheries using “endless” bountiful resources
  • logging impacting on watersheds and therefore sediment transport to ocean ecosystems
  • transportation corridors for lumber, mining, trade; certainly part of the ecosystem services of the area but also part of what has led to problems.
  • explorers, their contributions and the problems they brought for marine sustainability..
  • Marine mammal harvest: Whales, fur seal and sea otter population decimation and consequent ecosystem impacts.
  • Military.. Is the present use of military test ranges a sustainable use of the marine environment.
  • Subsea sonar problems
  • Humans discharging sewage into the ocean
  • etc

5.10 The First Nations Role

Return to Index

5.6 Aquaculture for a Sustainable Food Supply

Not all aquaculture is bad, and it is certainly necessary if we are to provide for the demand for seafood products. In the literature referenced, the principles of sustainability are emphasized. Reference 9 below gives the statistics of aquaculture products in BC. Polyculture methods used in some third world countries should also be considered as it helps to tie in with the global perspective.. It also helps to fulfill  mandates of the earth charter.

References for resources:

1.Indicators for the Sustainability of Aquaculture. D Pauly

http://www.fisheries.ubc.ca/members/dpauly/chaptersInBooksReports/2007/IndicatorsForTheSustainabilityOfAquaCulture.pdf

2. Sustainable Organic Aquaculture: http://www.aquanet.com/index.php?option=com_content&task=view&id=259&Itemid=44

3. Duckweed Farming: http://www.p2pays.org/ref/09/08875.htm#Section%202%20-%20Duckweed%20farming

4. Sustainable Marine Aquaculture, Jan 2007.

http://www.pewtrusts.org/uploadedFiles/wwwpewtrustsorg/Reports/Protecting_ocean_life/Sustainable_Marine_Aquaculture_final_1_07.pdf

5. DFO video on Sustainable Aquaculture…. Bamfield example.

http://www.dfo-mpo.gc.ca/Aquaculture/aquaculture_e.htm

http://www.dfo-mpo.gc.ca/Aquaculture/multimedia/video /gain_net_e.wmv

6. DFO- Pacific

http://www.dfo-mpo.gc.ca/aquaculture/pacific_e.htm

7. Integrated Multi-Trophic Aquaculture: http://www.dfo-mpo.gc.ca/aquaculture/innovation_e.htm#2

8. BC -Report of the Special Committee on Sustainable Aquaculture.

http://www.leg.bc.ca/cmt/38thparl/session-3/aquaculture/index.htm

9. Aquaculture Statistics in BC

http://www.env.gov.bc.ca/omfd/fishstats/aqua/index.html

10. Replacement of Fish Meal with Replacement of Fish Meal with Plant Proteins in Diets for Plant Proteins in Diets for Summer Flounder http://www.hboi.edu/aqua/downloads/pdf/conf07/bengston.pdf

abstract: http://www.hboi.edu/aqua/downloads/pdf/conf07/abstract_bengston.pdf

5.7 The Need for Protected Areas

Return to Index

 

5.0 Humans as a Part of Ocean Systems:

5.1 FISHERIES POLICIES FOR SUSTAINABILITY:

If Seafood fisheries in British Columbia are to remain sustainable then there must be adherence to a regime of regulations . Management of fisheries in the past has often led to depletion of resources. Examples can be drawn from herring and salmon resources in BC, the anchovy and sardine examples of Pacific Coast of North and South America, and the Atlantic Cod. The unsustainable practises of Drift net fisheries, bottom trawling, and by-catch are examples of why there are problems.(see reference No.5 below).

Here is an opportunity to emphasize best practices for ecologically sustainable fisheries. The Precautionary Principle is at the base of a requirement for sustainable fisheries.
Resource references:
1. In the report “Progress Towards Environmental Sustainability in British Columbia’s Seafood Sector., May 2001″ there are a number of excellent graphics which present a framework for sustainable fisheries.
http://www.bcseafoodalliance.com/BCSA/AMRSummitReport.pdf

The topics below are dealt with in length and provide excellent examples of displays and interactive presentations which could be set up on sustainable fisheries.

Sustainable Fishing and Aquaculture
Sustainable Harvest of Target species and Stocks
Limiting the impacts of Fisheries on Non-Target species,
Limiting Impacts on Habitats and Ecosystems
Ensuring effective management and regulation.

2. The Geoduck Fishery: has established a Code of Conduct for responsible Fishing.

http://www.geoduck.org/pdf/UHA_Code_Report.pdf

3. 2006 BC Seafood Industry report http://www.env.gov.bc.ca/omfd/reports/YIR-2006.pdf

4. Seafood Statistics:

http://www.env.gov.bc.ca/omfd/fishstats/index.html

5. FIsheries Issues:
http://oceanworld.tamu.edu/resources/oceanography-book/fisheriesissues.htm

Go to the sustainable aquaculture section

5.2 The Ecosystem Approach

From: http://www.worldwatch.org/node/5352 Oceans in Peril: Protecting Marine Biodiversity publ 2007

An ecosystem approach promotes both conservation and the sustainable use of marine resources in an equitable way. It is a holistic approach that considers environmental protection and marine management together, rather than as two separate and mutually exclusive goals. Paramount to the application of this approach is the establishment of networks of fully protected marine reserves, in essence, “national parks” of the sea. These provide protection of whole ecosystems and enable biodiversity to both recover and flourish. They also benefit fisheries by allowing for spillover of fish and larvae or eggs from the reserve into adjacent fishing grounds.
Outside of the reserves, an ecosystem approach requires the sustainable management of fisheries and other resources. Demands on marine resources must be managed within the limits of what the ecosystem can provide indefinitely, rather than being allowed to expand as demographic and market forces dictate. An ecosystem approach requires protection at the level of the whole ecosystem. This is radically different from the current practice, where most fisheries management measures focus simply on single species and do not consider the role of these species in the wider ecosystem.
An ecosystem approach is also precautionary in nature, meaning that a lack of knowledge should not excuse decision-makers from taking action, but rather lead them to err on the side of caution. The burden of proof must be placed on those who want to undertake activities, such as fishing or coastal development, to show that these activities will not harm the marine environment. In other words, current presumptions that favor freedom to fish and freedom of the seas will need to be replaced with the new concept of freedom for the seas.”

Reference:

1.Canessa, R., Conley, K., and Smiley, B. 2003. Bowie Seamount Marine Protected Area: an ecosystem overview report. Can. Tech. Rep. Fish. Aquat. Sci., 2461. …
http://www.seaaroundus.org/…/ASynthesisResearchActivitiesFCEcosystemBaseFish.pdf

2. http://archive.nafo.int/open/sc/2008/scs08-10.pdf.

Northwest Atlantic Fisheries Organization Serial No. N5511 NAFO SCS Doc. 08/10 SCIENTIFIC COUNCIL MEETING – JUNE 2008 Report of the NAFO Scientific Council Working Group on Ecosystem Approach to Fisheries Management (WGEAFM) NAFO Headquarters, Dartmouth, Canada 26-30 May 2008.

In recognition of an amended NAFO Convention (currently awaiting ratification) which has principles of an Ecosystem
Approach to Fisheries Management, Scientific Council established a Working Group on the Ecosystem Approach to
Fisheries Management in September 2007. Terms of Reference (ToR1) for this WG relate to the identification of eco-
regions within the NAFO Convention Area (NCA) and the development of ecosystem health indicators.

3. A synthesis of Research Activities at the Fisheries Centre on Ecosystem-based Fisheries Modelling and Assessment with emphasis on the Northern and Central Coast of BC..2007,
S.Guenete,V.Christiansen,C. Hover,M.Lam D.Preikshot, D. Pauly

5.3 Fishing Down Food webs

Return to Index

4.3 Ocean Pollutants

4.3 Ocean Pollutants:

A major problem with maintaining sustainable oceans is the global contaminations from atmospheric and direct point source pollution.

Probably the greatest single issue that needs to be dealt with here is that of the possibility of opening up the Coastal areas for offshore drilling. Our ability to debate this is a good test of how serious we are about thinking about marine resource sustainability for the future.

As theSierra Club puts it:
http://www.sierraclub.ca/bc/programs/marine/issue.shtml?x=550&als[URL_ITEM]=24ad1fd0ec90a1265449091eeba17b55

  • “The ecological risks are too great.
    One oil spill like the 1989 Exxon Valdez spill in Alaska would spell disaster for B.C.’s marine life. Exploration techniques like seismic testing have serious ecological consequences.
  •  Current environmental regulations are inadequate.
    Our provincial environmental regulations have been gutted. Federal legislation such as the Species at Risk Act is toothless. We lack a regime that can protect the natural environment.
  • B.C. needs to look beyond fossil fuel energy sources.
    Developing B.C.’s offshore oil and gas will mean committing to an energy source that has proven to be unsustainable. Canada has to reduce its greenhouse gas emissions to meet Kyoto targets. We need to invest in alternative energy sources now.”

OTHER CHEMICAL CONTAMINANTS harmful in the Marine Environment

Below are portrayed the records of some countries with good news stories. Find as many of these as possible to show that it is possible to do things right. Also see the section on types of demos and take aways for related ideas.
Reference: From:” WATER” http://www.unep.org/geo/geo4/report/04_Water.pdf

“Persistent organic pollutants (POPs) are synthetic organic chemicals that have wide-ranging human and environmental impacts (see Chapters 2, 3 and 6). In the late 1970s, studies of the North American Great Lakes highlighted the existence of older, obsolete chlorinated pesticides (so-called legacy chemicals) in sediments and fish (PLUARG 1978). As regulations curtailing their use were implemented, chemical levels have declined in some water systems since the early 1980s (see Chapter 6) (see Box 6.28). Similar declines have since been observed in China and the Russian Federation (see Figure 4.10). The estimated production of hazardous organic chemical-based pollutants in the United States by industry alone is more than 36 billion kilogrammes/ year, with about 90 per cent of these chemicals not being disposed of in an environmentally responsible manner (WWDR 2006). The chemicals in pesticides can also contaminate drinking water through agricultural run-off. There is growing concern about the potential impacts on aquatic ecosystems of personal-care products and pharmaceuticals such as birth-control residues, painkillers and antibiotics. Little is known about their long-term impacts on human or ecosystem health, although some may be endocrine disruptors. Some heavy metals in water and sediments accumulate in the tissues of humans and other organisms. Arsenic, mercury and lead in drinking water, fish and some crops consumed by humans have caused increased rates of chronic diseases. Marine monitoring conducted since the early 1990s in Europe indicates decreasing cadmium, mercury and lead concentrations in mussels and fish from both the northeast Atlantic Ocean and Mediterranean Sea. Most North Sea states achieved the 70 per cent reduction target for these metals, except for copper, and tributyltin (EEA 2003). Although occurring in some inland locations, such as the Upper Amazon, oil pollution remains primarily a marine problem, with major impacts on seabirds and other marine life, and on aesthetic quality. With reduced oil inputs from marine transportation, and with vessel operation and design improvements, estimated oil inputs into the marine environment are declining (UNEP-GPA 2006a) (see Figure 4.11), although in the ROPME Sea Area about 270 000 tonnes of oil are still spilled annually in ballast water. The total oil load to the ocean includes 3 per cent from accidental spills from oil platforms, and 13 per cent from oil transportation spills (National Academy of Sciences 2003). Despite international efforts, solid waste and litter problems continue to worsen in both freshwater and marine systems, as a result of inappropriate disposal of non- or slowly degradable materials from land-based and marine sources (UNEP 2005a).”

4.5 Beach or Coastal Modification and Implications

Return to Index

4.5.2 Introduced Species in the Marine Environment

One of the most  unexpected harmful things we do to the integrity of marine ecosystems is transfer organisms around the world by ballast tanks of the Marine Shipping Industry. This article on how a mapping system might be used to combat this problem may be useful:
Shipping map helps combat introduction of Invasive Species

Other references on this website address the issues of introduced or alien species that we have to be on the lookout for affecting our coastline:
Invasive Alien or Introduced  Species In Metchosin

5.0 Humans as part of Ocean Systems

Index

4.2 The Importance of pH

The Importance of pH:
The issue of ocean Acidification linked to Climate Change now has a a serious implication for Shellfish Producers. Their website reflects these concerns: http://bcsga.ca/ocean-acidification/

oceanprofileA few physical factors have a disproportionate effect on the distribution of organisms and the fact that humans play a large role in their modification means that their effects on the sustainability of ecosystems is rather importantaragonite, ph
Canadian Science Advisory Secretariat Research Document – 2008/013 State of physical, biological, and selected fishery resources of Pacific Canadian marine ecosystems(Page 37 of pdf file) Ocean acidification off the West Coast by Debby Ianson, Fisheries and Oceans Canada “Global oceans are becoming more acidic due to increasing carbon dioxide (Orr et al. 2005). Much of the extra CO2 released by burning fossil fuels ends up in the oceans, increasing the dissolved inorganic carbon concentration (DIC). As DIC increases, the relative proportions of carbon species shift (specifically from the carbonate ion to the bicarbonate ion), resulting in an increase in acidity and a decrease in pH (Strum and Morgan, 1981).

At present the pH of seawater has decreased by about 0.1 due to oceanic uptake of anthropogenic carbon and is projected to decrease by 0.4 by the year 2050 (Orr et al. 2005). The decrease in pH (and concurrent decrease in carbonate ion) means that organisms that produce calcite and aragonite shells or structures, such as pteropods, corals and shellfish, are threatened (The Royal Society, 2005).” “Very few data from the carbonate system have been collected on the Canadian west coast; however these few observations show that Juan de Fuca Strait and the Vancouver Island Coastal Current experience high pCO2 water due to tidal mixing in the Strait, which brings water high in DIC and low in pH to the surface (Ianson et al. 2003). An additional study with high spatial resolution confirms the high surface pCO2 (400 — 800 ppm; Nemcek et al, in press) in this area estimated by Ianson et al. (2003) but has no complimentary measurements (such as DIC) with which to determine pH in the Strait.”

From “WATER: http://www.unep.org/geo/geo4/report/04_Water.pdf Rainwater and ocean acidification Acidity in rainwater is caused by the dissolution of atmospheric CO2, as well as by atmospheric transport and deposition of nitrogen and sulphur compounds (see Chapters 2 and 3). This is important because biological productivity is closely linked to acidity (see Chapter 3). The box on acidifying cycles in Chapter 3 describes some of the impacts of acid deposition on the world’s forests and lakes. The oceans have absorbed about half of the global CO2 emissions to the atmosphere over the past 200years (see Chapter 2), resulting in the increasing acidification of ocean waters (The Royal Society 2005). Acidification will continue, regardless of any immediate reduction in emissions. Additional acidification would take place if proposals to release industrially produced and compressed CO2 at or above the deep sea floor are put into practice (IPCC 2005). To date, injection of CO2 into seawater has been investigated only in small-scale laboratory experiments and models. Although the effects of increasing CO2 concentration on marine organisms would have ecosystem consequences, no controlledecosystem experiments have been performed in the deep ocean nor any environmental thresholds identified. The impacts of ocean acidification are speculative, but could be profound, constraining or even preventing the growth of marine animals such as corals and plankton. They could affect global food security via changes in ocean food webs, and, at the local scale, negatively affect the potential of coral reefs for dive tourism and for protecting coastlines against extreme wave events. It is presently unclear how species and ecosystems will adapt to sustained, elevated CO2 levels (IPCC 2005). Projections give reductions in average global surface ocean pH (acidity) values of between 0.14and 0.35units over the 21st century, adding to the present decrease of 0.1 units since pre-industrial times(IPCC 2007). Managing water issues related to climate change Global-scale changes to the water environment associated with climate change include higher sea surface temperatures, disruption of global ocean currents, changes in regional and local precipitation patterns, and ocean acidification. These issues are typically addressed through global efforts, such as the UN Framework Convention on Climate Change and its Kyoto Protocol (see Chapter 2). Management at the global level involves numerous actions at regional, national and local scales. Many global conventions and treaties are implemented on this basis, with their effectiveness depending on the willingness of individual countries to contribute to their achievement. Because these changes are linked to other environmental issues (for example, land use and biodiversity), they must also be addressed by other binding or non-binding treaties and instruments (see Chapter 8). Major responses to the drivers of climate change – primarily the increased burning of fossil fuels for energy – are analysed in Chapter 2. These responses are generally at the international level, and require concerted action by governments over the long-term, involving legal and market- driven approaches. Focus is on responses to climate change-related impacts affecting the water environment that involve regulation, adaptation and restoration

Pacific Ocean acid levels jeopardizing marine life

Vancouver Island researchers use artificial tide pools to study threat
From CBC News
Posted: Jul 17, 2012 2:17 AM PT
Last Updated: Jul 17, 2012 12:19 PM PT

Very few data from the carbonate system have been collected on the Canadian west coast; however these few observations show that Juan de Fuca Strait and the Vancouver
Island Coastal Current experience high pCO2 water due to tidal mixing in
the Strait, which brings water high in DIC and low in pH to the surface
(Ianson et al. 2003).

An additional study with high spatial resolution
confirms the high surface pCO2 (400 — 800 ppm; Nemcek et al, in press) in
this area estimated by Ianson et al. (2003) but has no complimentary
measurements (such as DIC) with which to determine pH in the Strait.”
The foillowing is taken from the publication:”WATER”
http://www.unep.org/geo/geo4/report/04_Water.pdf”

Rainwater and ocean acidification : Acidity in rainwater is caused by the dissolution
of atmospheric CO2, as well as by atmospheric transport and deposition of
nitrogen and sulphur compounds (see Chapters 2 and 3). This is important
because biological productivity is closely linked to acidity (see Chapter
3). The box on acidifying cycles in Chapter 3 describes some of the
impacts of acid deposition on the world’s forests and lakes. The oceans
have absorbed about half of the global CO2 emissions to the atmosphere
over the past 200years (see Chapter 2), resulting in the increasing
acidification of ocean waters (The Royal Society 2005). Acidification will
continue, regardless of any immediate reduction in emissions. Additional
acidification would take place if proposals to release industrially
produced and compressed CO2 at or above the deep sea floor are put into
practice (IPCC 2005). To date, injection of CO2 into seawater has been
investigated only in small-scale laboratory experiments and models.
Although the effects of increasing CO2 concentration on marine organisms
would have ecosystem consequences, no controlled ecosystem experiments have
been performed in the deep ocean nor any environmental thresholds
identified. The impacts of ocean acidification are speculative, but could
be profound, constraining or even preventing the growth of marine animals
such as corals and plankton. They could affect global food security via
changes in ocean food webs, and, at the local scale, negatively affect the
potential of coral reefs for dive tourism and for protecting coastlines
against extreme wave events. It is presently unclear how species and
ecosystems will adapt to sustained, elevated CO2 levels (IPCC 2005).
Projections give reductions in average global surface ocean pH (acidity)
values of between 0.14and 0.35units over the 21st century, adding to the
present decrease of 0.1 units since pre-industrial times(IPCC 2007).

Managing water issues related to climate change Global-scale changes to the water
environment associated with climate change include higher sea surface
temperatures, disruption of global ocean currents, changes in regional and
local precipitation patterns, and ocean acidification. These issues are
typically addressed through global efforts, such as the UN Framework
Convention on Climate Change and its Kyoto Protocol (see Chapter 2).
Management at the global level involves numerous actions at regional,
national and local scales. Many global conventions and treaties are
implemented on this basis, with their effectiveness depending on the
willingness of individual countries to contribute to their achievement.
Because these changes are linked to other environmental issues (for
example, land use and biodiversity), they must also be addressed by other
binding or non-binding treaties and instruments (see Chapter 8). Major
responses to the drivers of climate change – primarily the increased
burning of fossil fuels for energy – are analyzed in Chapter 2. These
responses are generally at the international level, and require concerted
action by governments over the long-term, involving legal and market-
driven approaches. Focus is on responses to climate change-related impacts
affecting the water environment that involve regulation, adaptation and
restoration .

4.3 Oxygen depletion

Return to Index

4.0 Physical or Abiotic Factors

4.0 Physical or Abiotic Factors

Part of the structure of an ecosystem is its physical factors. The opportunity in the Marine Centre to demonstrate the close dependence of organisms on physical factors cannot be missed. It is a good way to emphasize to the public that one cannot seperate the physical and the living world and therefore one has to recognize that changing physical factors will have a direct impact on biodversity and the integrity of marine ecosystems. It is also an opportunity to break down the artificial barriers between biology, physics, chemistry and geology.

An approach which I have used on the racerocks.com website has been to treat all physical factors in terms of how they affect life organisms. Measuring the factor is one aspect , but recognizing the impact that those factors have on organisms presents a more interesting aspect. See examples on the links from the data page index at: http://www.racerocks.com/racerock/eco/ecodata.htm

So much of how we interact with Marine environments may influence the physical factors in which organisms have evolved to live for millions of years. Present the wide array of factors, with sensor feeds from a number of ecosystems.. Have specific examples of how the distribution of organisms is determined by those factors and how humans are changing some of those factors too quickly. A few summary points follow:

  • Successional changes caused by changes of abiotic factors.
  • The Physical Story. The marriage of the physical and life sciences.
  • How geology-topography affects the distribution of life.
  • A display of life zones and biodiversity connected to physical factors.
  • Live remote camera control station. Available on Kiosk mode computers access to several remote control cameras. Some can be located nearby in a secure area ( maybe one of the ponds at James Island.)
  • The marine industries of the Georgia Strait.. the positive things that are happening.
  • How marine industry can be sustainable without contamination and alteration of the physical factors of the environment.
  • Energy budget of a disturbed seabird or mammal video streaming on walls of boats and human activity impacting.
  • Storm drains and implication of runoffs in altering physical factors.
  • Agriculture and the sea… use of fertilizers pesticides on ocean ecosystems. Tie into interconnectivity of ecosystems.
  • Climate change and its effects on the oceans.
  • Part of the Structure and Function of Ecosystems: Role in energy flow and material cycles. Reference: Structure and Function of Ecosystems:http://www.racerocks.com/racerock/education/curricula/projects/structfunct.htm

4.1 Sensors and Data Collection for research.

I have listed here a number of ways to monitor physical factors of ecosystems at various levels and locations..

  • Local monitors of all exhibit tanks to show different parameters.
    • oxygen levels of aerated vs bottom muds
    • ph change as photosynthesis changes in a green pool
    • set up a green tank highly enriched with nutrients for this
    • have a “convertible tank” where automatic changes can be introduced which then can register abiotic changes on the instruments. This provides great opportunities for schools to do research. For instance a tank may have a screen barrier seperating two populations of fish or invertebrates. Oxygen, Co2 pH and other sensors monitors the whole tank. At periodic intervals, a gate is lowered seperating the water bodies of the two tanks, on the monitors, digital or graphics show a timeline and the change in physical factors contrasting the opposing sides.
    • demo of currents feeding barnacles.. ie dependence on that factors
  • Remote site monitors.
    • interactive modelling with temperature data from Race Rocks.. and implications for global change.
    • atmospheric and oceanographic sensors monitoring at Race Rocks.
    • Links and interpretations to physical measurements in real time from the Venus sub-sea research program.
    • Links and interpretations to physical measurements in real time from the Neptune sub-sea research program.
    • Links to the Victoria weather network… school contribution a part of this

4.1 Sensors and the Collection of Physical Data

4.2 The Importance of pH.

Return to Index

3.2 Integration and Interconnectivity of Marine Ecosystems.

The three themes to be emphasized here overlap into many other aspects of this report as well. We are talking about Ecosystems that by definition are interrelated. I think it is important to point them out as themes however since they may get overlooked otherwise.

1. Marine ecosystems and the organisms living within them are highly interconnected and interdependant.

2. The ecosystems people  live in and the activities they do in everyday life have a close connection with the welfare of marine ecosystems and their organisms.

3. We manage the resources and activities of different ecosystems in isolated jurisdictions of our governments and if change is to be effected, there are implications here.

—————————————————————————————-

1. A problem with defining the model of any marine system is that we have to draw boundaries which immediately restrict the reality of that system. We have a tendency to want to compartmentalize in order to make sense of things but nature doesn’t really work that way. This point should be made clear when modelling any ecosystem in an exhibit, and at every opportunity, the interactions with other ecosystems should be acknowledged.

  • The anadromous fish story is probably the classic one to show interactions . Not only marine and fresh water systems, but the interconnections with surrounding forests as well.
  • Marine mammals which may haul out on our rocky island ecosystems or swim in our local waters, but may within their lifetime traverse thousands of miles of coastal and open oceans.
  • Plankton distribution and migrations across ecosystems, the foam wind swept onto a beach carrying bits of ocean planktonic debris which is gleaned by a migrating shorebird, probably originated in the open ocean or as larvae in distant rocky intertidal zones.

2. A very constructive public education role can be served by any educational curriculum  in providing viewers with the evidence that the ecosystems in which they live and the activities they do in everyday life have a close connection with the welfare of marine ecosystems and their organisms. Just a few of the areas which can be included are as follows

  • coastal cities and the materials they shed into the water.
  • Agriculture runoff and the influence on eutrophication in marine systems.
  • Introduction of exotic species which compromises the ecological integrity of natural ecosystems
  • marine transportation and its effect
  • marine recreation and its effect on organisms and ecosystems.
  • Marine harvesting activities
  • The activities we do that affect climate change.

The point to make in all of this is that all these activities can have a range of impact from severe to non-significant in terms of how ecosystems are effected. Here again the proposal must be made that this is part of our choice of futures for the ocean.

3. The implications for management of the resources in these overlapping ecosystems becomes clear when one can appreciate that we have allowed different levels of governments to deal with different ecosystems without considering their interactions. It points to the need for a holistic model of ecosystem management, rather than a compartmentalized one. This was one of the intents of the Oceans Act.. to break down that conflict in jurisdictions and have a new way of looking at and ensuring sustainability of the marine environment. The fact that agriculture, forestry, parks, military and fisheries are all managed separately with little appreciation of the ecosystems of their overlapping jurisdictions must be presented in all its absurdity for the public to perhaps start an open dialogue on how sustainability can be insured if we can’t get it right.

As part of biodiversity, the ways that organisms themselves have interdependencies provides a number of opportunities to illustrate interesting interrelationships.

 So how can this be portrayed?

  • Start by finding ( if there are any) some positive examples of ecosystem management which takes into account the interrelated aspects of ecosystems.
  • Present best-case scenarios for marine sustainability issues.
  • In the take-aways section, provide constructive acts for visitors to follow up on in order to try to affect change that recognizes the need for a new method of marine ecosystem management.

3.3 Ecosystem Services and Natural Capital

Return to Index

3.1.1 Key Species

Although all parts of an ecosystem are important for its long term sustainability, several species can be selected out which are essential to the operation of the whole system.

  • herring
    need for controls on over-harvesting

Ways these can be impacted:

  • overharvesting,
  • competition from introduced species
  • habitat loss.
  • toxic materials

How to mitigate this..

  • increase in research, baseline standards
  • moratorium on marine system development,
  • need to restore lost habitat
  • need for large areas to be set aside as parks or reserves for habitat now while it is available, later it may diminish.
  • complete detoxification of all run-off waters.
  • “a no negative impact” is the only option for marine developments.
  • recognition of interconnectivity in management of resources.

3.2 Integration and interconnections of Marine Ecosystems

Return to Index

3.1.0 Ecosystem Integrity

The values of maintaining ecosystems that function in an unaltered and interconnected way are paramount. The importance of controlling introduced species and the controls that must be placed on fishing have to be emphasized. Habitat loss is a major problem. Without secure habitats, the ecosystem services are degraded. Ecosystems have structure and function . If one sees the many facets that make up a well functioning ecosytem with negative feedback loops keeping it in a steady state, then they may have a better idea about how impacts on the ecosystem can have far-reaching effects.

Reference FROM:” WATER” http://www.unep.org/geo/geo4/report/04_Water.pdf

Ecosystem integrity

Since 1987, many coastal and marine ecosystems and most freshwater ecosystems have continued to be heavily degraded, with many completely lost, some irreversibly (Finlayson and D’Cruz 2005, Argady and Alder 2005) (see Box 4.3). It has been projected that many coral reefs will disappear by 2040 because of rising seawater temperatures (Argady and Alder 2005). Freshwater and marine species are declining more rapidly than those of other ecosystems (see Figure 5.2d). Wetlands, as defined by the Ramsar Convention, cover 9–13 million km2 globally, but more than 50 per cent of inland waters (excluding lakes and rivers) have been lost in parts of North America, Europe, and Australia (Finlayson and D’Cruz 2005). Although data limitations preclude an accurate assessment of global wetland losses, there are many well- documented examples of dramatic degradation or loss of individual wetlands. The surface area of the Mesopotamian marshes, for example, decreased from 15 000–20 000 km2 in the 1950s to less than 400 km2 around the year 2000 because of excessive water withdrawals, damming and industrial development (UNEP 2001) but is now recovering (see Figure 4.12). In Bangladesh, more than 50 per cent of mangroves and coastal mudflats outside the protected Sunderbans have been converted or degraded.

Reclamation of inland and coastal water systems has caused the loss of many coastal and floodplain ecosystems and their services. Wetland losses have changed flow regimes, increased flooding in some places, and reduced wildlife habitat. For centuries, coastal reclamation practice has been to reclaim as much land from the sea as possible. However, a major shift in management practice has seen the introduction of managed retreat for the marshy coastlines of Western Europe and the United States. Although limited in area compared to marine and terrestrial ecosystems, many freshwater wetlands are relatively species-rich, supporting a disproportionately large number of species of certain faunal groups. However, populations of freshwater vertebrate species suffered an average decline of almost 50 per cent between 1987 and 2003, remarkably more dramatic than for terrestrial or marine species over the same time scale (Loh and Wackernagel 2004). Although freshwater invertebrates are less well assessed, the few available data suggest an even more dramatic decline, with possibly more than 50per cent being threatened (Finlayson and D’Cruz 2005). The continuing loss and degradation of freshwater and coastal habitats is likely to affect aquatic biodiversity more strongly, as these habitats, compared to many terrestrial ecosystems, are disproportionately species-rich and productive, and also disproportionately imperiled.

The introduction of invasive alien species, via ship ballast water, aquaculture or other sources, has disrupted biological communities in many coastal and marine aquatic ecosystems. Many inland ecosystems have also suffered from invasive plants and animals. Some lakes, reservoirs and waterways are covered by invasive weeds, while invasive fish and invertebrates have severely affected many inland fisheries. Declines in global marine and freshwater fisheries are dramatic examples of large-scale ecosystem degradation related to persistent overfishing,

http://www.maweb.org/documents/document.358.aspx.pdf

Mitigation of climate change. Sea level rise and increases in
storm surges associated with climate change will result in the
erosion of shores and habitat, increased salinity of estuaries and
freshwater aquifers, altered tidal ranges in rivers and bays,
changes in sediment and nutrient transport, and increased coastal
flooding and, in turn, could increase the vulnerability of some
coastal populations. Wetlands, such as mangroves and flood-
plains, can play a critical role in the physical buffering of climate
change impacts.

3.1.1 Key Species

Return to Index