Natural Capital of Metchosin’s Coastline

orcamalefemodIn recent years, we have started to acknowledge that “Ecosystem services “ are something to which we must start paying attention as to fail to do so leads to a rapid decline in our quality of life:  Some of the ecosystem services that are part of Natural Capital are defined below, and a link to the Race Rocks website provides a model of how Ecosystem Services may be evaluated in a local ecosystem.

The following materials have been adapted from that resource:
Ecosystem services

‘Ecosystem goods’, such as food, and ‘services’, such as waste assimilation, represent the benefits humans obtain from a properly functioning ecosystem and are usually referred together as ‘ecosystem services’. Unsurprisingly a large number of ecosystem services have been identified, especially for the oceans which cover the majority of the planet and the coastal zone where the majority of humans live.

The items below might have a relevance for Metchosin’s coastal areas.

These include: gas regulation (e.g. maintaining a balanced chemical composition in the atmosphere), climate regulation (e.g. control of global temperature, precipitation, greenhouse gas regulation, cloud formation)
disturbance regulation (e.g. storm protection, flood control, drought recovery),
water regulation (e.g. regulation of global, regional and local scale hydrology through currents and tides),
water supply (e.g. storage of water returned to land as precipitation),
erosion and sediment transport/deposition (e.g. moving sediments from source areas and replenishing depositional areas),
nutrient cycling e.g. the storage, internal cycling, processing and acquisition of nutrients, nitrogen fixation, phosphorus cycles),
waste treatment (e.g. the breakdown of excess xenic and toxic compounds),
biological control (e.g. the trophic-dynamic regulation of populations),
refugia (e.g. feeding and nursery habitats for resident and transient populations of harvested species),
food production (e.g. the portion of gross primary production which is extracted as food for humans),
raw materials (e.g. the portion of gross primary production which is extracted as fuel or building material),
genetic resources(e.g. sources of unique biological materials for medicines),
recreation (e.g. opportunities for tourism, sport and other outdoor pastimes) and cultural (e.g. opportunities for aesthetic, artistic, educational, spiritual activities).

The value (the theoretical cost of artificially replacing the services were they not to be provided by nature) to humanity of these ecosystem services has been estimated at $8400 billion per year for the open oceans and 1.5 times this for coastal ecosystems. Consumptive use (production of food and raw materials) is a minor (<5%) component and therefore the true value of marine ecosystems is in non- consumptive use. However quantifying such use is notoriously hard.

Adapted from the reference:
The structure and function of ecological systems in relation to property right regimes. In: Hanna, S., Folke, C., Maler, K.G. (Eds.), Rights to Nature. Island Press, Washington, DC, pp. 13 34. Authority. Research Publication No. 35, Townsville, Australia, pp. 83.   ( DOCUMENT ) Author(s) / Editor(s) Costanza, R., Folke, C., 1997.

You can have a look at the model proposed for a project at Race Rocks in this link:  DEFINING THE ECOSYSTEM SERVICES of RACE ROCKS.
It is our hope that while you are helping us to assemble the values of these Ecosystem services for Metchosin’s  you may be motivated to look in your own back yard and start placing a more realistic value on your own Ecosystems’ Services. ” Even today’s technology and knowledge can reduce considerably the human impact on ecosystems. They are unlikely to be deployed fully, however, until ecosystem services cease to be perceived as free and limitless, and their full value is taken into account.”

OTHER REFERENCES ON THIS TOPIC:

Patterns of a Conservation Economy: True Cost Pricing
http://www.conservationeconomy.net/natural_capital.html

Ecosystem Services:
http://www.conservationeconomy.net/ecosystem_services.html

Ecosystem Services: Benefits Supplied to Human Societies by Natural Ecosystems
http://www.ecology.org/biod/value/EcosystemServices.html

Millennium Ecosystem Assessments of the World Health organization
http://www.millenniumassessment.org//en/index.aspx

How ecosystem services relate to one another
http://www.ecosystemservicesproject.org/html/publications/docs/nair/chap7.pdf

Ethical Considerations in On-Ground Applications of the Ecosystem Services Concept, www.biosciencemag.org  1020 BioScience • December 2012 / Vol. 62 No. 12

http://ires.sites.olt.ubc.ca/files/2012/12/Luck-et-al-2012-BioSci-ethical-considerns-of-on-ground-ES-applicns.pdf

Ecosystem Services – Case studies from Australia
http://www.ecosystemservicesproject.org/index.htm

Securing Canada’s Natural Capital:
http://www.nrtee-trnee.ca/eng/publications/securing-canadas-natural-capital/securing-canadas-natural-capital-eng.pdf

Natural Capital:

http://www.conservationeconomy.net/content.cfm?PatternID=17

RESULTS OF NATIONAL SURVEY ON ECOLOGICAL GOODS AND SERVICES
http://www.maweb.org/documents/document.300.aspx.pdf

References specializing in Marine Ecosystem Services:

Aquatic ecosystems provide many services contributing to human well-being . Maintenance of the integrity and
the restoration of these ecosystems are vital for services such as water replenishment and purification, flood and drought control.

1. Other reference Ecosystem Services: The Role of Natural Capital
A piece that defines the ecosystem services of Race Rocks

2. ECOSYSTEM SERVICES: Benefits Supplied to Human Societies by Natural Ecosystems
http://www.ecology.org/biod/value/EcosystemServices.html

3. The encyclopedia of Earth: Marine ecosystem services:
http://www.ecology.org/biod/value/EcosystemServices.html

4. Assessing the Non-Market Values of Ecosystem Services provided by Coastal and Marine Systems http://www.ecotrust.org/katoomba/presentations/Marine_Coastal_Presentations
/NonMarket_Values_Coastal_Marine_Ecosystems_Matthew_Wilson_Shuang_Liu.pdf

5. Economic Valuation of Ecosystem Services
http://judylumb.com/eco-services.html

  • “It is most important to raise consciousness of the general public and of public officials and managers of the value of ecosystem services. Here are some ways that individual friends might choose.
    1)    Educate ourselves about ecosystem services.
    2)    Monitor local news for issues that impact ecosystem services to point out areas of public concern when ecosystem services are destroyed or disregarded.
    3)    Speak truth to power — communicate with local officials and congressional representatives about the implications of their decisions on ecosystem services.
    4)    Hold agencies to the environmental and public input requirements of the laws.
    5)    Make certain that preservation of ecosystem services is among the options presented.
    6)    Write letters to the editor to educate the public about ecosystem services”

6: Millennium Ecosystem assessment panel: Ecosystems and Human Well: being wetlands and water.
http://www.maweb.org/documents/document.358.aspx.pdf

7.The Ecosystem Services Project http://www.ecosystemservicesproject.org/

8. Global Warming — Blue Carbon.. A Sierra Club resouce on the value of seagrasses and salt marshes as 50 times more efficient Carbon fixers than forests.

3.3 Ecosystem Services and Natural Capital

BACKGROUND: A highlight of the sustainability theme is the potential to transmit to an audience a new way to look on and value the physical and living parts of a marine ecosystem which supplies a benefit directly or indirectly to humansThis is one area which provides potential for take away materials and ideas as well as action items.

Services Comments and Examples

  • Provisioning
    Food : production of fish,crustaceans, shellfish, edible marine algae, seabirds and seabird eggs,
    Salt water: a storage and retention of water for industrial use
    Oxygen production
    Biomass : Macroalgae for energy conversion .
    Biochemical: extraction of medicines and other materials from biota
    Industrial products such as marine algal products.
    Aggregate mining.
  • Regulating 
    Climate regulation sink for greenhouse gases; influence local and regional temperature,
    precipitation, and other climatic processes
    Habitat for local and migratory birds.
    Water regulation (hydrological flows)provides precipitation for groundwater recharge/
    Water purification and waste treatment retention, recovery, and removal of excess nutrients and other pollutants
    Retention of soils and sediments
    Natural hazard regulation flood control, storm protection.
  • Cultural
    Vibrant Coastal Communities
    Spiritual and inspirational source of inspiration; First Nations Cultures of the Pacific were nourished by the sea.
    Recreational opportunities for tourism and recreational activities
    Aesthetic many people find beauty or aesthetic value in aspects of marine ecosystems
    Educational and research opportunities for formal and informal education and training
  • Supporting 
    Sediment transfer, beach building.
    Nutrient cycling storage, recycling, processing, and acquisition of nutrients
    Transport of goods and services
    Waste treatment and detoxification,.
    Ocean Energy from Currents and Waves.

References:

1. From Marine Ecosystem Services :
From http://www.compassonline.org/” : Humans derive benefits (or ecosystem services) from ecological systems. These services are produced by plants, animals, microbes and people interacting with one another and the physical environment. Scientists recognize four categories of ecosystem services: provisioning services such as food, fuelwood, fiber, and water; regulating services such as the regulation of climate, floods, coastal erosion, drought and disease; cultural services including recreational, spiritual, religious and other nonmaterial benefits; and supporting services such as nutrient cycling and photosynthesis. Some key benefits provided by the ecosystem services of functioning marine systems include healthy seafood, clean beaches, stable fisheries, abundant wildlife, and vibrant coastal communities.

Value of biodiversity and ecosystem services

The supply of ecosystem services depends on many attributes of biodiversity. The variety, quantity, quality, dynamics and distribution of biodiversity that is required to enable ecosystems to function, and the supplying benefits to people, vary between services. The roles of biodiversity in the supply of ecosystem services can be categorized as provisioning, regulating, cultural and supporting, and biodiversity may play multiple roles in the supply of these types of services.

  • For example, in agriculture, biodiversity is the basis for a provisioning service (food, fuel or fibre is the end product),
  • a supporting service (such as micro-organisms cycling nutrients and soil formation),
  • a regulatory service (such as through pollination), and potentially,
  • a cultural service in terms of spiritual or aesthetic benefits, or cultural identity.

The contributions of biodiversity-dependent ecosystem services to national economies are substantial. The science of valuation of ecosystem services is new, and still developing basic conceptual and methodological rigour and agreement, but it has already been very instructive, since the value of such services is generally ignored or underestimated at decision and policy making levels. Identifying economic values of ecosystem services, together with the notions of intrinsic value and other factors, will assist significantly in future decisions relating to trade-offs in ecosystem management.

  • Value of: Annual world fish catch – US$58 billion (provisioning service).
  • Anti-cancer agents from marine organisms – up to US$1 billion/year (provisioning service).
  • Global herbal medicine market – roughly US$43 billion in 2001 (provisioning service).
  • Honeybees as pollinators for agriculture crops – US$2–8 billion/year (regulating service).
  • Coral reefs for fisheries and tourism – US$30 billion/year (see Box 5.5) (cultural service).
  • Cost of: Mangrove degradation in Pakistan – US$20 million in fishing losses, US$500 000 in timber losses, US$1.5 million in feed and pasture losses (regulating provisioning services). Newfoundland cod fishery collapse – US$2 billion and tens of thousands of jobs (provisioning service).

Of those ecosystem services that have been assessed, about 60 per cent are degraded or used unsustainably, including fisheries, waste treatment and detoxification, water purification, natural hazard protection, regulation of air quality, regulation of regional and local climate, and erosion control Most have been directly affected by an increase in demand for specific provisioning services, such as fisheries, wildmeat, water, timber, fibre and fuel. “

Aquatic ecosystems provide many services contributing to human well-being .Maintenance of the integrity and the restoration of these ecosystems are vital for services such as water replenishment and purification, flood and drought control.

1. Ecosystem Services : Benefits Supplied to Human Societies by Natural Ecosystems
http://www.ecosystemservices.org.uk/

2. Assessing the Non-Market Values of Ecosystem Services provided by Coastal and Marine Systems; http://www.eartheconomics.org/FileLibrary/file/Reports/Assessing_NonMarket_Values.pdf

3. Economic Valuation of Ecosystem Services
http://www.ecosystemvaluation.org/1-02.htm

  • “It is most important to raise consciousness of the general public and of public officials and managers of the value of ecosystem services. Here are some ways that individual friends might choose.
    1)    Educate ourselves about ecosystem services.
    2)    Monitor local news for issues that impact ecosystem services to point out areas of public concern when ecosystem services are destroyed or disregarded.
    3)    Speak truth to power — communicate with local officials and congressional representatives about the implications of their decisions on ecosystem services.
    4)      Hold agencies to the environmental and public input requirements of the laws.
    5)       Make certain that preservation of ecosystem services is among the options presented.
    6)    Write letters to the editor to educate the public about ecosystem services”

4: Ecosystems and Human Wellbeing
http://www.who.int/globalchange/ecosystems/ecosys.pdf

5. Amory Lovins lecturing on Natural Capital in a lecture at Berkley8. 

6.   Ecosystem Services: The Role of Natural Capital

A assignment that defines the ecosystem services of Race Rocks
This page with curricular ideas is based on the original found at:
http://www.racerocks.ca/ecology/ecosystemservices/
Although it is targeted as an exercise for Race Rocks, It could be used similarly in any other ecosystem.

See below for a preview:

In recent years, we have started to acknowledge that “Ecosystem services ” are something to which we must start paying attention as to fail to do so leads to a rapid decline in our quality of life: This file explores that idea further and invites you to contribute to a new project :
DEFINING THE ECOSYSTEM SERVICES of RACE ROCKS.
It is our hope that while you are helping us to assemble the values of these Ecosystem services for Race Rocks, you may be motivated to look in your own back yard and start placing a more realistic value on your own Ecosystems’ Services. ” Even today’s technology and knowledge can reduce considerably the human impact on ecosystems. They are unlikely to be deployed fully, however, until ecosystem services cease to be perceived as free and limitless, and their full value is taken into account.”

OBJECTIVES: After doing this assignment,students will beableto:

1. Define what is meant by the terms ecosystem services.

2. Define what is meant by the term Natural Capital.

3. Enumerate the Ecosystem services of Race Rocks.

PROCEDURES:

1. Using the references below, investigate what is meant by Natural Capital and Ecosystem Services. Make a table where you can list the ecosystem services which you think are provided by an area like Race Rocks. In the table make a dollar estimation of the value of that service per year.

2. Using the area where you live, make a list of the ecosysterm services provided by your local ecosystems, and rate which you think are the most important.

Here are some ideas to get you started:

  • You will observe commercial whale/marine mammal/bird/-watching boats in the area.. how many passengers do they carry and what is the value generated per trip.
  • You may see tankers and others vessels going by which you can also record . Race Rocks has a lighthouse and foghorn.. What is the value to ships of this set of islands for navigation?
  • Research is done at Race Rocks by students of schools, colleges and universities? What is the value of this location for research and education?
  • An Integrated Energy System was developed at Race Rocks. What is the value of this to BC Parks, to the BC government, to Pearson College?
  • A number of viewers around the world use Race Rocks as a location for bird and animal viewing. See the examples from England which are linked to the Daily Log
  • The role of marine protected areas in conservation is a world wide goal. How does the Management Plan for Race Rocks reflect ecosystem services provided by the area. http://www.env.gov.bc.ca/bcparks/planning/mgmtplns/race_rocks/racerock.html
BACKGROUND REFERENCE: From:
http://www.oceansatlas.org/servlet/CDSServlet?status=ND0xOTAwMS4xO
TAwNiY2PWVuJjMzPWRvY3VtZW50cyYzNz1pbmZvUNEP – WCMC 
 
Ecosystem services‘Ecosystem goods’, such as food, and ‘services’, such as waste assimilation, represent the benefits humans obtain from a properly functioning ecosystem and are usually referred together as ‘ecosystem services’. Unsurprisingly a large number of ecosystem services have been identified, especially for the oceans which cover the majority of the planet and the coastal zone where the majority of humans live.The red high-lighted topics below might have a relevance for RaceRocks:These include: gas regulation (e.g. maintaining a balanced chemical composition in the atmosphere),
climate regulation  (e.g. control of global temperature, precipitation, greenhouse gas regulation, cloud formation)
disturbance regulation (e.g. storm protection, flood control, drought recovery),
water regulation (e.g. regulation of global, regional and local scale hydrology through currents and tides),
water supply (e.g. storage of water returned to land as precipitation),
erosion and sediment transport/deposition (e.g. moving sediments from source areas and replenishing depositional areas),
nutrient cycling e.g. the storage, internal cycling, processing and acquisition of nutrients, nitrogen fixation, phosphorus cycles),
waste treatment (e.g. the breakdown of excess xenic and toxic compounds),
biological control (e.g. the trophic-dynamic regulation of populations),
refugia  (e.g. feeding and nursery habitats for resident and transient populations of harvested species),
food production (e.g. the portion of gross primary production which is extracted as food for humans),
raw materials (e.g. the portion of gross primary production which is extracted as fuel or building material),
genetic resources (e.g. sources of unique biological materials for medicines),
recreation (e.g. opportunities for tourism, sport and other outdoor pastimes) and cultural (e.g. opportunities for aesthetic, artistic, educational, spiritual activities).The value (the theoretical cost of artificially replacing the services were they not to be provided by nature) to humanity of these ecosystem services has been estimated at $8400 billion per year for the open oceans and 1.5 times this for coastal ecosystems. Consumptive use (production of food and raw materials) is a minor (<5%) component and therefore the true value of marine ecosystems is in non- consumptive use. However quantifying such use is notoriously hard.Adapted from the reference:
The structure and function of ecological systems in relation to property right regimes. In: Hanna, S., Folke, C., Maler, K.G. (Eds.), Rights to Nature. Island Press, Washington, DC, pp. 13 34. Authority. Research Publication No. 35, Townsville, Australia, pp. 83.   ( DOCUMENT ) Author(s) / Editor(s) Costanza, R., Folke, C., 1997.OTHER REFERENCES ON THIS TOPIC:
Patterns of a Conservation Economy: True Cost Pricing
http://www.conservationeconomy.net/natural_capital.html
Ecosystem Services:
http://www.conservationeconomy.net/ecosystem_services.html
Ecosystem Services: Benefits Supplied to Human Societies by Natural Ecosystems
http://www.ecology.org/biod/value/EcosystemServices.html
Millennium Ecosystem Assessments of the world Health organization
http://www.millenniumassessment.org//en/index.aspx
Securing Canada’s Natural Capital:
http://nrt-trn.ca/biodiversity/securing-canadas-national-capital

4.0 The Physical Story

Return to Index

3.1.1 Key Species

Although all parts of an ecosystem are important for its long term sustainability, several species can be selected out which are essential to the operation of the whole system.

  • herring
    need for controls on over-harvesting

Ways these can be impacted:

  • overharvesting,
  • competition from introduced species
  • habitat loss.
  • toxic materials

How to mitigate this..

  • increase in research, baseline standards
  • moratorium on marine system development,
  • need to restore lost habitat
  • need for large areas to be set aside as parks or reserves for habitat now while it is available, later it may diminish.
  • complete detoxification of all run-off waters.
  • “a no negative impact” is the only option for marine developments.
  • recognition of interconnectivity in management of resources.

3.2 Integration and interconnections of Marine Ecosystems

Return to Index

5.7 The Need for Protected Areas

For too long, the government of Canada has bowed to the pressures of special interest groups and has avoided committing areas for no-take reserves on the Pacific Coast. In researching this topic I was surprized to see that several Marine Protected Areas have been created in Eastern Canada in the past year, but none in BC.

The reference on the RAMSAR convention (http://www.ramsar.org/key_brochure_2004_e.htm) provides a valuable source of information about the conservation and wise use of all wetlands. The estuaries and mudflats of the Pacific Coast are exactly the kind of ecosystem that this international convention targets. After defining the wetlands the following is stated as their idea of “Wise Use” .

  • And wise use?
    Wise use is defined as “sustainable utilization for the benefit of mankind in a way compatible with the maintenance of the natural properties of the ecosystem” .
    Sustainable utilization is understood as “human use of a wetland so that it may yield the greatest continuous benefit to present generations while maintaining its potential to meet the needs and aspirations of future generations”.
    “Wise use” therefore has conservation of wetlands, as well as their management and restoration, at its heart.
  • The process for nominating a site in Canada can be found here in Tools for implementing the COnvention on Wetlands. http://www.wetkit.net/modules/2/sub_category.php?parent_cat_id=209&cat_id=229
  • Why are there no RAMSAR sites in theOceanic Regions of Canada. See this map..(http://www.aquatic.uoguelph.ca/wetlands/chramsar.htm ? A good idea for a take away action item.

from: Marine Fisheries Systems:

http://www.millenniumassessment.org/documents/document.287.aspx.pdf

18.6.3 Effectiveness of Marine Protected Areas Marine protected areas with no-take reserves at their core can reestablish the natural structures that have enabled earlier fisheries to maintain themselves. (See also Chapter 4.) MPAs are not a recent concept. Historically, many fisheries were sustained be- cause a portion of the target population was not accessible. Most targeted fisheries were offshore or in areas adjacent to lands with low human populations and therefore subject to relatively low threat. However, modern fishing technology for mapping the sea- bed and for finding and preserving fish (artificial ice and blast freezing) expanded the reach of fishing fleets. A number of recent studies have demonstrated that MPAs can help in managing fisheries (Roberts et al. 2002). Most of these studies have covered spatially small areas and primarily in tropical shelf systems, although emerging studies from temperate areas, such as New Zealand and Chile, have also demonstrated MPA effectiveness. However, other studies have found that MPAs have not delivered the expected benefits of protecting species and their habitats (Hilborn et al. 2004; Edgar and Barrett 1999; Willis et al. 2003). In many cases failure was due to either not including MPAs as part of a broader coastal management system or a lack of man- agement effectiveness, funding, or enforcement. In the Gulf of Mexico, for example, the establishment of MPAs merely shifted fishing effort to other areas and increased the vulnerability of other stocks and endangered species (Coleman et al. 2004). Knowledge on the size and location of MPAs that can act as effective buffers against the impacts of fishing requires further research.It has been widely and repeatedly demonstrated that marine protected areas, particularly no-take marine reserves, are essential to maintain and restore biodiversity in coastal and marine areas (COMPASS and NCEAS 2001). Their wide-scale adoption is inhibited by the perception that biodiversity is unimportant relative to fishers’ access to exploitable resources. Therefore, the propo- nents of marine reserves have been saddled with the additional task of demonstrating that setting up no-take reserves will increase fisheries yields in the surrounding areas, as well as determining the appropriate size and siting of marine reserves that are needed to at least sufficiently offset the loss of fishing grounds. This requirement, combined with initiatives by recreational fishers as- serting rights to fish, has effectively blocked the creation of marine reserves in many parts of the world. Thus while the cumulative area of marine protected areas is now about 1% of the world’s oceans, only about one tenth of that—0.1% of the world’s oceans—is effectively a no-take area. This gives an air of unreality to suggestions that 20% and an opti- mum of 30 –50% of the world’s ocean should be protected from fishing to prevent the loss of some species now threatened with extinction and to maintain and rebuild some currently depleted commercial stocks (National Research Council 2001; Roberts et al. 2002; Airame et al. 2003; Agardy et al. 2003). Even the more modest CBD target of 10% MPA coverage by 2012 will be hard to reach. One approach to resolving this dilemma is to take an adaptive management approach so that the use of MPAs within a suite of fisheries management options can be assessed and modified as new information emerges and lessons learned are shared (Hilborn et al. 2004). This avoids unrealistic expectations on the improved performance of MPAs. Any approach to the use of MPAs in man- aging marine ecosystems would also benefit enormously from including performance monitoring and enforcement programs to address some of the management problems that have traditionally hindered effectiveness (Coleman et al. 2004). If properly located and within a context of controlled fishing capacity, no-take marine reserves enhance conventional fisheries management outcomes. They may, in some cases, reduce catches in the short term, but they should contribute significantly to im- proving fishers’ livelihoods as well as biodiversity over the mid to long term. Marine reserves generally perform this way in inshore shelf systems (such as reefs); many case studies, as shown in Saba Marine Park (Netherlands Antilles), Leigh Marine Reserve (New Zealand), and Sumilon Island Reserve (Philippines), are described in detail in Roberts and Hawkins (2000) to support this. How- ever, understanding of the effectiveness of marine reserves in managing fisheries in deeper oceanic areas is more limited. Further, the protection and monitoring of these deep-sea areas and other undamaged areas may, in line with the precautionary princi- ple, avoid the need for mitigation or restoration of the systems later, when costs are likely to be higher (and in some cases restoration may not be viable). Already, the demand for fish resources has pushed fishing fleets into international waters, and as other resources become scarcer in national waters (such as gas, oil, minerals, and carbon sinks), conflicts over the best use of these common resources and spaces will increase. Hence the growing call for ocean zoning, including the creation of no-take zones that would reestablish the reserves that were once in place due to vessels lacking the tech- nology to gain access to deeper, offshore areas, which in the past has protected exploited species.

2. DRAFT PLAN CALLS FOR ONE THIRD OF GREAT BARRIER REEF MARINE PARK TO BE NO-TAKE, MPA NEWS  Vol. 4, No. 11  June 2003

http://depts.washington.edu/mpanews/MPA42.htm

3. Marine Protected Areas of the United States http://mpa.gov/

Marine Protected Areas (MPAs) are valuable tools for conserving the nation’s natural and cultural marine resources as part of an ecosystem approach to management. The United States has many types of MPAs for many purposes, including conservation of natural heritage, cultural heritage and sustainable production. Learn more about the national effort to build an effective national system of marine protected areas.

4 Australian MPAs http://www.environment.gov.au/coasts/mpa/index.html

5.WWF: Our Solutions: Marine Protected Areas http://www.panda.org/about_wwf/what_we_do/marine/our_solutions/protected_areas/index.cfm

Only 0.6% of the world’s oceans are protected, and the vast majority of existing marine parks and reserves suffer from little or no effective management. This is despite the fact that MPAs not only help safeguard biodiversity, they can also benefit fisheries and people.he benefits offered by MPAs include:
• Maintaining biodiversity and providing refuges for species
• Protecting important habitats from damage by destructive fishing practices and other human activities and allowing damaged areas to recover
• Providing areas where fish are able to spawn and grow to their adult size
• Increasing fish catches (both size and quantity) in surrounding fishing grounds
• Building resilience to protect against damaging external impacts, such as climate change
• Helping to maintain local cultures, economies, and livelihoods which are intricately linked to the marine environment
• Serving as benchmarks for undisturbed, natural ecosystems, that can be used to measure the effects of human activities in other areas, and thereby help to improve resource management

6. The Science of Marine Reserves

http://www.piscoweb.org/outreach/pubs/reserves

This site has a good set of videos.

These resources provide the latest scientific information about reserves in an understandable and accessible format. They are designed to be used by natural resource managers, government officials, scientists, and the interested public. To view the video by segment or a PDF version of the U.S. booklet, international booklet, or 2002 booklet, please click on the links below.

7.CPAWS About Marine Protected Areas
http://www.cpawsbc.org/marine/mpas/index.php

Benefits of Marine Reserves:

>Conservation of commercial resources
> Protection of critical and unique habitats
> Conservation of endangered or threatened species
> Scientific research and monitoring
> Enhancement of recreation and tourism opportunities
> Socioeconomic benefits for coastal communities
> Evidence that MPAs work

8. MPA News

http://depts.washington.edu/mpanews/

5.8 The Ecological Footprint

Return to Index

CRD Coastal Process

Image

This booklet was written in the 1970’s based on the report done by Dr. Wolf Bauer.

Click on the icon of each page of the gallery to view.

 

Metchosin Marine Issues, an Expression of Concern.

The Unique Value of our Coastal Ecosystems

The Coastal Resources of Metchosin are a valuable form of Natural Capital that must have special consideration when Development Planning is done in the District.   The Crown owns the foreshore to the high tide mark, and although one would think this allowed protection, there are still considerable threats to the ecological integrity of this area, which must be considered. The shoreline is an interface between two systems, the terrestrial uplands and the open ocean. As typical of any natural system, one cannot separate them in terms of management decisions, as they have processes, which interact.   Community members of a progressive coastal community should tolerate no activities involving human action that contribute to any level of destabilization or decline of our present shoreline ecosystems.

Along our shorelines in Metchosin, we have a variety of unique marine ecosystems.

  • Tidal marshes,
  • lagoons,
  • estuaries,
  • bays,
  • eel-grass beds,
  • high speed current channels,
  • underwater caves,
  • vertical underwater cliffs,
  • boulder beaches,
  • sand beaches,
  • and pebble (pocket) beaches.

Every metre of coastal intertidal zone also has a characteristic set of organisms, which can be impacted by actions of humans either from the land side or the ocean side.  Larger commercial species of fish often feed or spawn near the shoreline interface, juvenile fish migrate along shorelines, often relying on protective habitat of overhanging vegetation or kelp beds, and the energy flow in the food webs of at least 7 local marine mammal species are directly affected.

It is further recognized that a viable commercial crab fishery, as well as an extensive sports fishery operates along the coastal areas of Metchosin.

Rockfishconservationareas19_20 The ocean environment in the area of Race Passage has also been recognized as an important habitat for the regeneration of Rockfish stock leading to the creation of a DFO rockfish conservation areas where all fishing is prohibited.

 

 

 

anthroimpactThis file and map of the the Metchosin Shoreline shows the major areas where humans have modified the habitat, often resulting in ecosystem modification and loss of habitat for local species of fish, invertebrates and marine mammals. The term Anthropogenic refers to human modification.

 

ecoareasThis file contains a map with the ecologically sensitive areas of Metchosin’s Coastal Ecosystems.
Terrestrial Threats:

  • Erosion from road building, utility and sewer installation, subdivision development carrying silt into the receiving waters has a negative impact on filter feeders (e.g. Clams, mussels and anemone) in the ocean.
  • Crushed rock deposited in upland areas in road building and building lot creation may have serious toxic impacts on marine life as water leaches through it carrying dissolved metallic ions to the sea.
  • Accidental or planned deposition of hazardous materials in soils can also lead to leaching to the marine waters.
  • Deforestation on upland slopes leads to deterioration of coastal ecosystems.
  • Channelization of streams leads to silt output and increased fresh water flow to ocean environments.
  • Human traffic, (especially horses) on beaches can severely impact on spawning areas of needle fish (on Taylor beach)
  • Uncontrolled dogs can have a serious impact on feeding patterns of shorebirds- especially crucial during migration.
  • Humans and dogs on beaches can impact on molting elephant seals.
  • Beach debris can be washed seaward, to be ingested by marine animals.
  • Oil and chemicals from storm sewer drains is toxic to marine creatures.
  • Building too close to cliffs can lead to destabilization and therefore slumping of land into the ocean. This is especially of concern along the cliffs of Parry Bay and Albert Head.
  • Sewage disposal on land in septic fields, contributes a large nutrient load as it leaches through to the shoreline. The heavy die-off of algal growth on Weir?s beach annually, is evidence of this.
  • Development on the coastline as has recently occurred South of Devonian Park can lead to alteration of the coastal resource, habitat smothering and destruction, and increases shoreline erosion risk.
  • Backshore alteration of any beach habitat for intended purposes of bank stabilization, inevitably in the long run leads to shorefront habitat deterioration.

Marine Threats:

Tanker traffic very close to our shores, poses a continual risk of oil and chemical spills. In the areas shown in the map, red indicates highly sensitive and a long term residency of oil. Yellow indicates a lesser residence time of oil. Green indicates a faster cleanup may be possible because of exposure to waves and currents. See this reference on Threats from tanker traffic 

  • Increase in cruise lines in recent years has a potential to impact our coastal resources.
  • Increasing fast boat traffic is hazardous to harbour seal pups and slow moving marine mammals (such as elephant seals) in particular.  It also increases rates of coastal erosion in sheltered bays.
  • Boat motor sound underwater affects animals relying on the underwater seascape for communication.
  • whalewiseWhale watching boating patterns have an impact on the time whales can spend foraging in the area.

 

 

  • Antifouling compounds on ships (some military) and in boats in marinas provide a further risk to the marine environment

Return to MetchosinCoastal

Originally published by G.Fletcher in 2004.