Riparian Rights and Public Foreshore Use in the Administration of Aquatic Crown Land


Occasional Paper No. 5  Revised: August 2008
Prepared by:
Ministry of Agriculture and Lands Crown Land Administration Division Province of British Columbia in cooperation with the Land Title and Survey Authority of British Columbia

Preparing for Climate Change: DPAs

From:
PREPARING FOR CLIMATE CHANGE:
Page 35 Development Permit Areas
Creating a DPA is a way to shape the development or redevelopment of a given area, and guidelines for the DPA (in the OCP or in a zoning bylaw) can include both broad prescriptions for land use as well as site specific requirements. Preparing for climate change impacts may mean updating existing DPAs to account for different levels of risk or changes to best practices, or in some cases developing new DPAs. There is already well-established practice in BC with respect to using DPAs to manage land use in areas with defined hazards, such as interface wildfires, or slope stability issues and many examples to draw on. DPAs for wildfire hazards may also include requirements about landscaping and the siting, form, exterior design and finish of buildings. DPAs can also be used to restrict development and protect and/or restore natural features and areas, and can be used to help protect key natural ecosystems in the face of climate change.
DPAs can offer local governments a more flexible approach to regulating development than zoning because guidelines can specify results and allow site-specific solutions. For example, a DPA can specify a certain level of onsite stormwater infiltration, while a zoning bylaw could only specify the site coverage allowed.
The Local Government (Green Communities) Statutes Amendment Act (2008) created the opportunity for new types of DPAs, including those designed to promote energy and water conservation. Local governments can employ these DPAs to help make their communities more resilient to climate change impacts like water shortages and potential disruptions in centralized energy supply due to heavy seasonal demand or extreme weather events. Like
DPAs for wildfire hazards, they may also include requirements about landscaping and the siting, form, exterior design and finish of buildings to further energy and water conservation and greenhouse gas reduction goals. For more information see
DPAs can offer local governments a more flexible approach to regulating development than zoning because guidelines can specify results and allow site- specific solutions.

An Implementation Guide for Local Governments in British Columbia DPAs for energy and water conservation may also establish restrictions on the type and placement of trees and other vegetation in proximity to the buildings and other structures in order to provide for the conservation of energy, which can be considered in the context of reducing the heat island effect in urban areas. DPAs can be used together with complementary measures such as servicing requirements, development cost charges and other local government tools to achieve climate change adaptation objectives

 

DEVELOPMENT PERMIT AREAS: Local Government Act, ss. 919.1-920
In an OCP a local government may designate areas within its jurisdiction where development permits are required before any subdivision, rezoning, construction or (in some cases) any disturbance of the land may occur, the reason the development permit is required, along with guidelines outlining the requirements for obtaining a development permit (which may be in the OCP or a zoning bylaw). The range of purposes that may be relied on for creating development permit areas is quite broad. Those of most interest with respect to climate change adaptation measures are likely protection of the natural environment, protection of the community from hazardous conditions, and establishing objectives to promote conservation of water and energy

Hardening of the Shorelines: Principles

The following is from :
Shorelines Modification , by the State of Washington Dept of Ecology

(ii) Principles. Shorelines are by nature unstable, although in varying degrees. Erosion and accretion are natural processes that provide ecological functions and thereby contribute to sustaining the natural resource and ecology of the shoreline. Human use of the shoreline has typically led to hardening of the shoreline for various reasons including reduction of erosion or providing useful space at the shore or providing access to docks and piers. The impacts of hardening any one property may be minimal but cumulatively the impact of this shoreline modification is significant.

Shoreline hardening typically results in adverse impacts to shoreline ecological functions such as:

  • Beach starvation. Sediment supply to nearby beaches is cut off, leading to “starvation” of the beaches for the gravel, sand, and other fine-grained materials that typically constitute a beach.
  • Habitat degradation. Vegetation that shades the upper beach or bank is eliminated, thus degrading the value of the shoreline for many ecological functions, including spawning habitat for salmonids and forage fish.
  • Sediment impoundment. As a result of shoreline hardening, the sources of sediment on beaches (eroding “feeder” bluffs) are progressively lost and longshore transport is diminished. This leads to lowering of down-drift beaches, the narrowing of the high tide beach, and the coarsening of beach sediment. As beaches become more coarse, less prey for juvenile fish is produced. Sediment starvation may lead to accelerated erosion in down-drift areas.
  • Exacerbation of erosion. The hard face of shoreline armoring, particularly concrete bulkheads, reflects wave energy back onto the beach, exacerbating erosion.
  • Ground water impacts. Erosion control structures often raise the water table on the landward side, which leads to higher pore pressures in the beach itself. In some cases, this may lead to accelerated erosion of sand-sized material from the beach.
  • Hydraulic impacts. Shoreline armoring generally increases the reflectivity of the shoreline and redirects wave energy back onto the beach. This leads to scouring and lowering of the beach, to coarsening of the beach, and to ultimate failure of the structure.
  • Loss of shoreline vegetation. Vegetation provides important “softer” erosion control functions. Vegetation is also critical in maintaining ecological functions.
  • Loss of large woody debris. Changed hydraulic regimes and the loss of the high tide beach, along with the prevention of natural erosion of vegetated shorelines, lead to the loss of beached organic material. This material can increase biological diversity, can serve as a stabilizing influence on natural shorelines, and is habitat for many aquatic-based organisms, which are, in turn, important prey for larger organisms.
  • Restriction of channel movement and creation of side channels. Hardened shorelines along rivers slow the movement of channels, which, in turn, prevents the input of larger woody debris, gravels for spawning, and the creation of side channels important for juvenile salmon rearing, and can result in increased floods and scour.

Additionally, hard structures, especially vertical walls, often create conditions that lead to failure of the structure. In time, the substrate of the beach coarsens and scours down to bedrock or a hard clay. The footings of bulkheads are exposed, leading to undermining and failure. This process is exacerbated when the original cause of the erosion and “need” for the bulkhead was from upland water drainage problems. Failed bulkheads and walls adversely impact beach aesthetics, may be a safety or navigational hazard, and may adversely impact shoreline ecological functions.

Hard” structural stabilization measures refer to those with solid, hard surfaces, such as concrete bulkheads, while “soft” structural measures rely on less rigid materials, such as biotechnical vegetation measures or beach enhancement. There is a range of measures varying from soft to hard that include:

  • Vegetation enhancement;
  • Upland drainage control;
  • Biotechnical measures;
  • Beach enhancement;
  • Anchor trees;
  • Gravel placement;
  • Rock revetments;
  • Gabions;
  • Concrete groins;
  • Retaining walls and bluff walls;
  • Bulkheads; and
  • Seawalls.

Generally, the harder the construction measure, the greater the impact on shoreline processes, including sediment transport, geomorphology, and biological functions.