Shiner Perch, Cymatogaster aggregata on the beach

This Shiner Perch, Cymatogaster aggregata was at the water’s edge on Taylor Beach this morning. Cause of death is unknown. They are often found along our coast in shallow waters, and eel-grass communities, and serve as important forage fish, especially as juveniles.

2014=aug-perch1
Classification from Species 2000 & ITIS Catalogue of Life: April 2013
Animalia
Chordata
Actinopterygii
Perciformes
Embiotocidae
Cymatogaster
Cymatogaster aggregata Gibbons, 1854

Ammodytes personatus -Pacific Sand Lance spawning at Taylor Beach

gf-sandlance-july1320154

Sand lance and ruler in centimetres

birdsonsandbar2

Sandbar at the North end of Taylor Beach

This morning with the extreme low tide, (tonight is the full moon)  the small sandbar off the north end of Taylor beach was exposed for a few hours. As the tide came back in, a crow and a glaucous winged-gull were patrolling the area and picking up sandlance as they emerged from the sand, flipped around a few times and then died.  In 15 minutes walking  back and forth along the 40 metre stretch of the sandbar, I picked up 15 of the dead sandlance, forage fish. Several that were still active were returned to the water where they died within a few minutes.  Perhaps this a solution–  having  direct predation as soon as they emerge from their sand burrows in order to prevent  fouling of the beach..

Species recognized by IRMNG:

Kingdom: Animalia +
Phylum: Chordata
Class : Actinopterygii
Order: Perciformes
Family: Ammodytidae
Genus: Ammodytes Linnaeus, 1758
Species: personatus

2014 Metchosin Bioblitz: Gooch Creek species

A large group of interested Metchosinites took a tour through the Gooch Creek estuary and shorefront as part of the Bioblitz which this year focused on Fresh water and estuarine habitats.

Below is the list of some of the findings:

iron bacteria Bacteria Bacteria gooch creek upland ID: Garry Fletcher
Tuber gibosum oregon white truffle fungus Fungus gooch creek upland ID: Ben Hircock
Gerris remigis water strider invertebrate insect gooch creek estuary ID: Garry Fletcher
Tipula spp. crane fly invertebrate insect gooch creek estuary ID: Garry Fletcher
? unidentified water
mite species
Invertebrate arthropod Gooch Creek Pond ID: Rick Nordin
Planaria sp flatworm Invertebrate Platyhelminthes Gooch Creek Pond ID: Rick Nordin
Physella gyrina snail Invertebrate mollusca Gooch Creek Pond ID: Rick Nordin
Planaria sp flatworm Invertebrate Platyhelminthes Gooch Creek Pond ID: Rick Nordin
Physella gyrina snail Invertebrate mollusca Gooch Creek Pond ID: Rick Nordin
Philaneus spumarius spittle bug Invertebrate Insect gooch creek estuary ID: Garry Fletcher
Tipula spp. crane fly invertebrate insect gooch creek estuary ID: Garry Fletcher
Oscillatoria (2 species) diatom Phytoplankton: diatom Gooch Creek Pond ID: Rick Nordin
Synedra sp diatom Phytoplankton: diatom Gooch Creek Pond ID: Rick Nordin
Cyclotella sp diatom Phytoplankton: diatom Gooch Creek Pond ID: Rick Nordin
Sphaerozosma sp diatom Phytoplankton: diatom Gooch Creek Pond ID: Rick Nordin
Hydrosera diatom -spectacular and uncommon Phytoplankton: diatom Gooch Creek Pond ID: Rick Nordin
Kephyrion diatom Phytoplankton: diatom Gooch Creek Pond ID: Rick Nordin
Achillea millefolium yarrow Vascular plant Forb adjacent toTaylor beach ID: Garry Fletcher
Ambrosia chamissonis Silver burr ragweed Vascular plant Forb adjacent to Taylor beach ID: Garry Fletcher
Cakille edentula American Sea Rocket Vascular plant forb adjacent to Taylor beach ID: Garry Fletcher
Chenopodium album red goosefoot Vascular plant Forb gooch creek estuary ID: Garry Fletcher
? Colomia heterophylla vari-leaved collomia Vascular plant Forb gooch creek estuary ID: Garry Fletcher
Epipactis helleborine. orchid Vascular plant forb gooch creek estuary ID: Garry Fletcher
Equisetum arvense field horsetail Vascular plant forb gooch creek estuary ID: Garry Fletcher
Galium aparine cleavers Vascular plant Forb adjacent to Taylor beach ID: Garry Fletcher
Lathyrus littoralis Beach Pea Vascular plant Forb adjacent toTaylor beach ID: Garry Fletcher
Lemna minor Common duckweed Vascular plant forb gooch creek estuary ID: Garry Fletcher
Lysichiton americanum skunk cabbage Vascular plant forb gooch creek estuary ID: Garry Fletcher
Maianthemum dilatatum false lily of the valley Vascular plant Forb gooch creek estuary ID: Garry Fletcher
Oenanthe sarmentosa Pacific water parsley Vascular plant Forb gooch creek upland ID: Garry Fletcher
Potentilla anserina silverweed Vascular plant Forb gooch creek estuary ID: Garry Fletcher
Ranunculus occidentalis Western buttercup Vascular plant Forb gooch creek estuary ID: Garry Fletcher
? Ranunculus repens Creepinng buttercup Vascular plant Forb gooch creek estuary ID: Garry Fletcher
Rumex cripsus curled dock Vascular plant Forb gooch creek estuary ID: Garry Fletcher
Rumex obtusifolius broad leafed dock Vascular plant Forb gooch creek estuary ID: Garry Fletcher
Sanicle crassicaulis Pacific sanicle Vascular plant Forb gooch creek upland ID: Garry Fletcher
Sonchus oleraceus Sow thistle Vascular plant Forb gooch creek estuary ID: Garry Fletcher
Stachys cooleyae Cooley’s hedge nettle Vascular plant Forb gooch creek estuary ID: Garry Fletcher
Veronica beccabunga American brooklime Vascular plant Forb gooch creek estuary ID: Garry Fletcher
Holcus lanatus Velvet grass Vascular plant grass gooch creek estuary ID: Garry Fletcher
Festuca arundenacea tall fescue Vascular plant grass gooch creek estuary ID: A.Ceska
Distichlis spicata seasaide saltgrass Vascular plant grass gooch creek estuary ID: Garry Fletcher
Triglochin maritima Sea arrowgrass Vascular plant grass gooch creek estuary ID: Garry Fletcher
Lemus mollis tall beachgrass Vascular plant grass adjacent toTaylor beach ID: Garry Fletcher
Typha latifolia cattail Vascular plant grass gooch creek estuary ID: Garry Fletcher
Phragmites australis (Cav.)
Trin. ex Steud. subsp. americanus
marsh reed grass Vascular plant grass gooch creek estuary ID: Garry Fletcher, by DNA Sampling-FLNRO
Scirpus microcarpus small-flowered bulrush Vascular plant Rush gooch creek estuary ID: A.Ceska
Scirpus validus hard-stemmed bulrush Vascular plant Rush gooch creek estuary ID: A.Ceska
Juncus balticus Artic rush Vascular plant Rush gooch creek estuary ID: A.Ceska
Juncus effusus common rush Vascular plant Rush gooch creek estuary ID: A.Ceska
Carex obnupta slough sedge Vascular plant sedge gooch creek estuary ID: A.Ceska
Carex sitchensis Sitka sedge Vascular plant sedge gooch creek estuary ID: A.Ceska
Cystis scoparius Scotch broom Vascular plant shrub gooch creek estuary ID: Garry Fletcher
Rosa nutkana Nootka rose Vascular plant shrub gooch creek estuary ID: Garry Fletcher
Mahonia aquifolium oregon grape Vascular plant shrub gooch creek upland ID: Garry Fletcher
Physocarpus capilatus Pacific ninebark Vascular plant shrub gooch creek estuary ID: Garry Fletcher
Oemleria cerasiformis Indian plum Vascular plant Shrub gooch creek estuary ID: Garry Fletcher
Rubus spectabilis salmon berry Vascular plant Shrub gooch creek estuary ID: Garry Fletcher
Symphoricarpos albus snowberry Vascular plant Shrub gooch creek estuary ID: Garry Fletcher
Ulex europaeus gorse Vascular plant Shrub adjacent to Taylor beach ID: Garry Fletcher
Viburnum edule highbush cranberry Vascular plant Shrub gooch creek estuary ID: Garry Fletcher
Cornus sericea red osier dogwood Vascular plant Shrub gooch creek estuary ID: Garry Fletcher
Populus balsamifera Black Poplar Vascular plant tree gooch creek estuary ID: Garry Fletcher
Acer macrophyllum big leaf maple Vascular plant Tree gooch creek upland ID: Garry Fletcher
Alnus rubra red alder Vascular plant Tree gooch creek upland ID: Garry Fletcher
Arbutus menziesii arbutus Vascular plant Tree gooch creek upland ID: Garry Fletcher
Malus fusca Pacific crabapple Vascular plant Tree gooch creek upland ID: Garry Fletcher
Prunus emarginata Bitter cherry Vascular plant Tree gooch creek upland ID: Garry Fletcher
Pseudotsuga menziesii Douglas fir Vascular plant Tree gooch creek upland ID: Garry Fletcher
Salix sitchensis Sitka willow Vascular plant Tree gooch creek estuary ID: Garry Fletcher
Abies grandis grand fir Vascular plant tree adjacent toTaylor beach ID: Garry Fletcher
Taxus brevifolia Pacific western yew Vascular plant Tree gooch creek estuary ID: Garry Fletcher
Anas platyrhynchos mallard Vertebrate Bird gooch creek estuary ID: Garry Fletcher
Agelaius phoeniceus red-winged blackbird Vertebrate Bird gooch creek estuary ID: Garry Fletcher
Geothlypis trichas yellowthroat Vertebrate Bird gooch creek estuary ID: Rick Shortinghouse
Falco columbarius merlin Vertebrate Bird gooch creek upland ID: Rick Shortinghouse
Callipepla californica California quail Vertebrate Bird gooch creek upland ID: Garry Fletcher
Gasterosteus aculeatus, 3-spined Stickleback Vertebrate Fish gooch creek estuary ID: Moralea Milne
Bioblitz Species in the Gooch Creek Area, May 2014,
submitted by Garry Fletcheramerican_brooklime_flowermany grass species and mosses were groups that were not identified< 

Eelgrass /macroalgae Habitat Survey Guidelines: Washington State

Below is a publication which may be useful in providing ideas for a similar program in Metchosin:

Eelgrass/Macroalgae Habitat Interim Survey Guidelines

This publication was downloaded from http://wdfw.wa.gov/publications/00714/

Introduction

Under the Washington Administrative Code (WAC), eelgrass and macroalgae are defined as saltwater habitats of special concern (WACs 220-110-250 (3)(a, b)). In administering the Hydraulic Project Approval (HPA) process, the Washington Department of Fish and Wildlife (WDFW) requires proponents for projects to: 1) avoid impacting eelgrass and macroalgae, 2) minimize unavoidable impacts, and 3) mitigate for any impacts. Mitigation for the loss of eelgrass typically entails providing eelgrass enhancement away from the project footprint. Because establishment of new eelgrass for mitigation is often unsuccessful, project proponents need to address this uncertainty by increasing the scope of their mitigation effort, such as planting an area larger than the project impact footprint. For macroalgae mitigation measures, the WDFW Area Habitat Biologist (AHB) shall be consulted.

In known or suspected eelgrass areas, proponents shall survey to delineate the spatial extent of eelgrass and macroalgae presence in the project area. If the project cannot be moved or redesigned to avoid direct eelgrass and macroalgae impacts, surveys are required for quantifying potential impacts. Surveys shall be conducted by divers/biologists who are qualified to identify the predominant eelgrass and macroalgae species in the project area. Deviations from the survey guidelines shall be approved by the AHB prior to conducting eelgrass or macroalgae surveys. Survey results and interpretation will be subject to WDFW approval.

Preliminary Surveys

Preliminary surveys are conducted to:

  1. 1)  determine if eelgrass or macroalgae are present at the proposed project site,
  2. 2)  evaluate if the project can be located and constructed to avoid impacting eelgrass or macroalgae, and
  3. 3)  establish a location for the project that will minimize impacts when avoidance is not possible. Eelgrass/Macroalgae Habitat Interim Survey Guidelines 1 of 6 (Rev. 06/16/2008)

Preliminary surveys shall provide:

A project site map indicating all survey transects and showing the qualitative distribution of eelgrass and macroalgae (boundaries of each patch), as well as substrate characterization along each transect. The map should also indicate approximate depth contours and the approximate location of the proposed project footprint (e.g., the dimensions of the pier, ramp and float).

Protocol Guidance

  1. Transects should be referenced to a permanent physical feature at the project site in such a way that transects can be precisely relocated in the future.
  2. Transect length and location should be determined by project and site specifics, and should include the landward margin of the eelgrass or macroalgae habitat, if present. Transect coverage should extend at least 25 feet waterward of the project footprint, and, if possible, to the outer margin of the eelgrass or macroalgae bed.
  3. To document the potential for eelgrass or macroalgae impacts from a project, at least one transect should be aligned along the proposed centerline of the project footprint. Additional transects shall be conducted on either side of the project footprint at 10 and 25 feet from the outer edges of the proposed structure. The inner and outer edges of each eelgrass or macroalgae patch shall be documented along each transect and noted on the site map.
  4. Depth contours should be established relative to mean lower low water equal to 0.0 feet elevation (MLLW=0.0 ft.). Tidal reference and correction should be noted on the site map.
  5. Survey documentation must include the date and time of the survey, name of the surveyor and their affiliation, turbidity/visibility measurements, presence of invertebrate and vertebrate species, and anecdotal observations pertinent to habitat characterization of the project site (e.g., presence of rocky outcroppings, debris, etc.).
  6. Conducting surveys between June 1 and October 1 is strongly preferred because the full extent of eelgrass and macroalgae distribution can be more accurately mapped. However, preliminary surveys may be conducted at any time during the year.

To meet the need to minimize eelgrass and macroalgae impacts, and the requirement to document the centerline of the project footprint, some flexibility at the time of the survey may be necessary. A preferred method is to establish a transect parallel to the shoreline, along the midpoint of the eelgrass or macroalgae bed, to locate any open patches where a

Eelgrass/Macroalgae Habitat Interim Survey Guidelines 2 of 6 (Rev. 06/16/2008)

new centerline for the project could be placed. Typically, an open area sufficient to accommodate a ten-foot buffer around the project footprint will be necessary.

If the preliminary survey shows that the project can be located and built without impacting eelgrass or macroalgae, the preliminary survey will meet the needs for mapping the project area. However, if the project footprint potentially impacts existing eelgrass or macroalgae beds, advanced surveys to quantify the extent of impact and document mitigation success, will be required.

Advanced Surveys

Advanced surveys shall occur between June 1 and October 1 and are conducted to:

  1. quantify the impact from the project to eelgrass and macroalgae, and
  2. quantify the performance of mitigation actions.

Quantifying Impacts

The standard protocols described below are designed to give accurate estimates of project impacts. Eelgrass density is determined by sampling with quadrats along transects. Two methods are typically used to determine project impacts and required mitigation. Project impacts are calculated as the total area of eelgrass affected by the project, as determined by the AHB. Alternatively, project impacts can be monitored in the project area to determine eelgrass or macroalgae loss and required mitigation. Sampling results are used to calculate the size of the mitigation project required to compensate for impacts that cannot be avoided.

As noted above, a project proponent may choose to monitor post-project impacts directly. The size of the required mitigation obligation may be reduced by this approach (e.g., in cases where post project impacts were less than anticipated). However, this approach will require additional monitoring of survey transects for a number of years to evaluate potential changes to eelgrass densities in the project area and within a reference site. This approach involves potentially higher mitigation ratios due to the delay in mitigation project construction (e.g., adjusting for temporal loss of function).

Alternative sampling designs are allowed, when agreed to in consultation with the AHB. This may be particularly appropriate when the potential impacts have been avoided to the maximum extent possible, and only a few small patches of eelgrass remain within or near the project footprint. In such a case, a full census of impacted eelgrass may be the most cost-effective option (e.g., counting all eelgrass shoots in the impact area). Alternatively, a stratified sampling of the existing patches may be a better choice (e.g., taking density estimates in the eelgrass patches only).

Eelgrass/Macroalgae Habitat Interim Survey Guidelines 3 of 6 (Rev. 06/16/2008)

Statistical Considerations

1. Measuring mitigation success (or direct impacts of a project) requires comparing eelgrass densities at a mitigation (or impact) site versus a reference site. These comparisons must be statistically rigorous, and include the following statistical considerations:

  • Low probability of a Type I error – concluding there is loss of eelgrass when, in fact, there is not. This issue is addressed by selecting a small value for α in statistical analyses, usually 0.10.
  • Low probability of a Type II error – failing to detect a loss of eelgrass when, in fact, there is one. Selecting a small value for β (applying high statistical power, (1-β)) ensures this. Power set at 0.90 provides low probability of a Type II error.
  • Effect threshold – the difference in mean eelgrass density between sites. The WDFW has established monitoring standards for these surveys: a) α = 0.10, b) power (1 – β) = 0.90, and c) a difference of mean eelgrass density of 20%. Surveys using an alternative design must meet or exceed these standards. Standard Protocols for Quantifying Impact
  1. For a linear project, a single transect should be aligned along the centerline of the footprint.
  2. A minimum of 30 samples must be taken within the area of eelgrass or macroalgae. Samples consist of eelgrass shoot counts within a (minimum) 1⁄4 m2 area quadrat. Sampling stations may be placed randomly along the transect, or for simplicity, evenly spaced along the same line starting at a random point (i.e., stratified random). Convert raw sample counts to shoot densities per square meter (#/m2).
  3. Using the sample data, calculate mean eelgrass density ( ̄x project) in the impact area, as well as sample variance (s2).

Assessing Mitigation Performance

Eelgrass density often varies substantially among locations and through time, making it difficult to measure mitigation success. To address this uncertainty, WDFW requires the use of a reference site to account for regional differences in eelgrass density and temporal variability. Use of a reference site can also improve monitoring efficiency, supporting rigorous results with fewer samples. The reference site should be chosen to match the characteristics of the mitigation area.

Eelgrass/Macroalgae Habitat Interim Survey Guidelines 4 of 6 (Rev. 06/16/2008)

Quantifying Mitigation Performance

Reference Site Characterization

1. Choose a reference site near the proposed mitigation site. The reference site should be similar to the mitigation site in depth profile, substrate, turbidity, and disturbance regimes.

2. Within the reference site, take a minimum of 30 samples, either randomly or stratified randomly. Samples involve counting eelgrass shoots within a (minimum) 1⁄4 m2 area quadrat. Samples can be larger than 1⁄4 m squares, but all samples need to reference the area from which they were taken so that the data can be converted to shoot densities (#/m2).

3. Calculate the mean density of eelgrass at the reference site ( ̄x reference) as well as sample variance (s2).

Mitigation Area Extent

The objective of eelgrass mitigation is to replace lost shoots and an area equivalent to the impacted area. If the mean density of eelgrass is lower at the reference site than within the impact area, the size of the mitigation project needs to be enlarged such that the reference site has the same total number of shoots as the impact site. For example, if the project impacts an area of 10 m2, with a mean eelgrass density of 20 shoots/m2, while the reference area has a mean shoot density of 10 shoots/m2, the mitigation area would need to be at least 20 m2 (to achieve a 1:1 mitigation ratio). However, if the reference site has greater density than the impact area, no area adjustment to the mitigation site would be necessary to address density differences. In addition, other factors can influence mitigation ratios and thus the required size of the mitigation area.

Mitigation Sampling and Performance

Mitigation monitoring consists of sampling both the reference site and the mitigation area at three and five-years following the completion of the mitigation project. Sampling one year following project completion is recommended to detect early failures at the mitigation site, but the need for this can be determined on a site-specific basis. Enough samples must be taken at the two sites to be able to detect significant differences in eelgrass density at the mitigation site versus the reference site using the statistical considerations noted above. A Microsoft Excel spreadsheet (Sample_Size_Calculator.xls) programmed to calculate the required sample size is provided by WDFW. Specific directions for entering data are included on the spreadsheet. The sample size calculator uses the following formula, modified from Zar (1999).

N = [2*s2reference/( ̄x reference – x ̄ mitigation)2] * (t α(1), v + t β(1), v)2

Eelgrass/Macroalgae Habitat Interim Survey Guidelines 5 of 6 (Rev. 06/16/2008)

Where: N = required sample size in each site (i.e., mitigation and reference), s2reference = sample variance from the reference site,
x ̄ = sample mean
t = percentage values from Student’s t-distribution

v = degrees of freedom

If the required number of samples is prohibitively expensive, due to inherent variability of eelgrass density, the statistical power of the monitoring may be lowered. This will entail a larger mitigation project to account for the increased statistical uncertainty.

Statistical Testing

At year three and five post construction, the proponent is required to re-sample and compare (statistically) eelgrass densities at the reference and mitigation site (using the prescribed number of plots defined in the equation above). We suggest using a two- sample, one-tailed t-test for comparison of eelgrass mean densities from mitigation versus reference areas. The statistical null hypothesis in this case is – H0: eelgrass density at the mitigation site eelgrass density at the reference site.

The year-three sample is designed to detect potential early failures in eelgrass growth at the mitigation site, relative to the reference site, that may suggest the need for additional actions at the mitigation site (e.g., additional transplants). Final mitigation success or failure will be based on year-five survey results and statistical testing (H0: eelgrass density at the mitigation site density at reference site, and total shoot abundance criteria has been met). Failure to meet prescribed eelgrass density (i.e., rejecting the null hypothesis) and shoot abundance will require implementation of contingency actions identified in the mitigation plan.

Eelgrass/Macroalgae Habitat Interim Survey Guidelines 6 of 6 (Rev. 06/16/2008)

American Brooklime Veronica beccabunga in Gooch Creek Estuary

In the Metchosin Bioblitz I came across a plant which I had not seen before called American Brooklime, Veronica beccabunga.

This plant grows as an edible herbaceous perennial in a 1 Meter square patch in amongst the grasses in the estuary lagoon .  The area is only flooded  with sea water in the winter at an extreme high tide with a strong east wind blowing. Close up, it has very striking flowers. The plant was in bloom on May 24, 2014.

american_brooklime_flower

American brooklime

2014-06-01-American-brooklimeallm

American Brooklime- [plant form]

Kingdom: Plantae
(unranked): Angiosperms
(unranked): Eudicots
(unranked): Asterids
Order: Lamiales
Family: Plantaginaceae
Genus: Veronica
Species: V. americana

 

Strand line of Rhodophytes (red algae)

Today there is a strong swell from the North East on Taylor beach which has deposited a good sample of the diversity of the algae that live in the subtidal zone just  below the low-tide level.

gingeronstrasndline2014-03-28

Taylor Beach in Parry Bay at the southern end of Vancouver Island. This beach gets winds and waves from the East in the fall, winter and spring months, but is protected by having only west winds from June to September. There is long-shore drift toward the north end of the beach  in the summer as the energy from the westerlies refract around William Head, visible in the distance on the left.

rhodophytestrand

The Red algae as they lay in the strand line showing the upper limits of the last high tide and the swell which deposited the algae.

redalgaediversity2014-03-28

The greatest biodiversity is shown in the Rhodophytes or red algae shown here picked out from the strand line within a few square metres.

redalgaeprionitis2014-03-28

A sample of the red algae, Prionitis lanceolata . which is normally found on the low intertidal of rocky shores.

alaria2014-03-28

Alaria marginata, a brown algae firmly attached by it’s holdfast which has carried a rock up onto the beach in the surf.

phaeophyte diversity

Some of the brown algae ( Phaeophyte) species in the strand line

A new Lease on Life for the Rare Marsh Plant: Phragmites australis subsp. americanus–A note of caution when attempting to control Invasive Species

By Garry Fletcher, Metchosin, British Columbia

goochcreekpops

The yellow dots show the margin of the Gooch Creek Estuary. The populations of native Phragmites are shown in red. Location: 48deg,22′,11.01″N—123deg 31’52.19″ W.

 

Introduced species are no doubt one of the most serious challenges for us in the effort to preserve ecological integrity*. Occasionally however we can mete out  a death sentence to an innocent which can have serious consequences.  This post is about one such occurrence with the native marsh/estuary grass Phragmites australis (Cav.) Trin. ex Steud. subsp. americanus

When we first bought our property on William Head Road, I was intrigued with the variety of ecosystems that could fit into one small 4 hectare piece of land. One such ecosystem was the  seasonally flooded salt marsh at the foot of the property. In that marsh were two populations of a very tall (2-3 metre) marsh reed grass.

In the mid-1980s, I asked one of our members of * MEASC, Robert Prescott-Allen to identify the species for me and he came up with the genus name Phragmites. He indicated that it used to be more common in our coastal estuaries, but it had been destroyed in the early years with cattle trampling and grazing. Now it only occurs in limited  populations in BC and in some populations along the Oregon Coast.

When I made the website MetchosinCoastal , I included a profile on the marsh with images of this plant on the Taylor Beach/Gooch Creek page . phragmiteskalleFast forward twenty years or so until 2009. I received a call from the Invasive Plant EDRR Coordinator | B.C. Ministry of Forests, Lands & Natural Resource Operations
PO Box 9513, 8-727 Fisgard St, Victoria B.C. CANADA V8W 9C1. She indicated that there were 9 populations of the introduced species Phragmites australis (Cav.) Trin. in BC and it was their mandate to control all of them. She came out to the farm, took samples and pictures and I sent her pictures of the extent of the grass in the marsh over the last few years indicating it really hadn’t spread that much. She made reference to a sample in the RBC museum which had been collected from our pond in 1992 which was identified as the introduced variety.

She indicated she would be out with a crew in the fall to cut the plants to the ground and spray with the herbicide Glyphosate . (and this being next to a sea-run cutthroat stream!)

On their website, the locations of this plant in BC were identified .  When the call came that they were coming out, I started to do research on the species.  I valued this plant as a great nesting habitat for red-winged blackbirds, and in the summer they get infested with aphids, providing food to wasps, marsh wrens and other birds. In addition, the hollow stems made excellent homes for Mason Bees.

2013-05-15redstem3

The red stems mentioned on the Oregon ID website are visible in the growing season on our population of reeds. I checked in early Dec.2013 and the red color is still visible.

I referred to a website from the Government of Oregon, which gave a comparison on the physical features of native , (Phragmites australis subsp.americanus) and introduced species samples. It looked very much like the native species to me, with most of the morphological characteristics corresponding. It also indicated that DNA analysis of tissue samples was the only definitive way to determine the genotype of the species.

I also contacted Dr. Adolf Ceska for his opinion, he indicated that the invasive variety probably came into BC in the 1980s. This population in our marsh was well established before the 1980s, and has not progressed very much since then. It is in a seasonal estuary, it floods with fresh
This species reproduces both asexually by underground rootstalks as well as sexually by seeds born on panicles such as this.

This species reproduces both asexually by underground root-stalks as well as sexually by seeds born on panicles such as this.

water with heavy winter rains,  but only gets flooded with a salt water intrusion at high tides driven by a east-wind driven storm surge. (winter only)

phragmitestassleoct13I tend to think that the salt water controls its distribution  somewhat in this particular marsh.  Interestingly,  in recent years cattails have spread  in the pond and they were previously also controlled by salt water. The main invasive in the marsh is reed canary grass.

I told the  Invasive Plant EDRR Coordinator when she showed up with her crew of two to “remove it”  that I would not allow it unless it was proven to be the invasive by DNA analysis.  I heard back from her in the spring 2014.
Phragmites australis subsp. americanus growing in the Gooch Creek marsh

Phragmites australis subsp. americanus growing in the Gooch Creek marsh (in November) of the year

In December of 2013, I was contacted by a wetlands restoration company from Nanaimo, BC about the population, as  they found out from the RBC museum that our population was the native variety. I had not heard this yet so I contacted Dr. Ken Marr at the museum, and he indicated that DNA tests had been done and that it was indeed the native species.

 

  • He writes “At this very moment I happen to be at UVIC looking at the raw data from the DNA analysis that was mostly completed a year ago.  We have been doing a parallel study of morphology and DNA of 140 or so samples of Phragmites.  Long story short, we have determined from the DNA analysis, that the populations on your land are the native genotype.  In fact, the analysis of the the sample from your land convinced the coordinator of the value of doing the DNA analysis since she had thought the plants on your land were the invasive genotype. Her conclusion may have been based upon my tentative ID of a specimen collected in 1992(?) from your land and that I thought to be the invasive genotype using the characters that have been used to distinguish the native from the invasive. All who have worked on this group acknowledge that for some individual plants, it is difficult to be certain which genotype to which a plant belongs, however DNA markers are viewed to be unambiguous.”
So having regained its “native species” reputation it is protected. The moral of the story is that we must not act impulsively on eliminating introduced species unless we are absolutely certain of the species, and in the case of Phragmites, DNA testing is a minimum requirement before extirpation is promoted.
This has ben published in the BEN ( Botanical Electronic Newsletter)  http://bomi.ou.edu/ben/ben475.html
  • One value added  aspect of the dead hollow stems of Phragmites australis subsp. americanus is that they make great Mason Bee homes. The bottom metre and a half of the larger stems have internode lengths of up to 20 cm, and the inside diameter of the stems is 8 mm.

REFERENCES:

1.BEN , Botanical Electronic News: References on the identification of native and introduced varieties of Phragmites
2. Native to North America or introduced (or both)?
Information on the Morphological Differences between the Native and Introduced
3. Saltonstall, K., Burdick, D., Miller, S., and Smith B. 2005.  Native and Non-native Phragmites : Challenges in Identification, Research, and Management of the Common Reed,  National Estuarine Research Reserve Technical Report Series 2005. (This publication has a good set of comparative photographs of the two varieties.)
4. Swearingen, J. and K. Saltonstall. 2010. Phragmites Field Guide Distinguishing Native and Exotic Forms of Common Reed (Phragmites australis) in the United States. Plant Conservation Alliance, Weeds Gone Wild.
5. from The Encyclopedia of Earth,   Phragmites australis – cryptic invasion of the Common Reed in North America, “Kristin Saltonstall of the Smithsonian Tropical Research Institute has conducted a series of groundbreaking genetic analyses on P. australis. Her research has identified 29 unique genetic types, or haplotypes, of the grass globally. Of these, 13 are native to North America and historical pre-1910 samples indicate a wide distribution of these native haplotypes across the continent. Modern sampling has revealed the widespread presence of a non-native haplotype growing throughout North America. This newcomer’s DNA matches that of a Eurasian haplotype that is the most common P. australis haplotype in the world.”

Kingdom Plantae – plantes, Planta, Vegetal, plants
Subkingdom Viridaeplantae – green plants
Infrakingdom Streptophyta – land plants
Division Tracheophyta – vascular plants, tracheophytes
Subdivision Spermatophytina – spermatophytes, seed plants, phanérogames
Infradivision Angiospermae – flowering plants, angiosperms, plantas com flor, angiosperma, plantes à fleurs, angiospermes, plantes à fruits
Class Magnoliopsida
Superorder Lilianae – monocots, monocotyledons, monocotylédones
Order Poales
Family Poaceae – grasses, graminées
Genus Phragmites Adans. – reed
Ed. Note: Species subspecies americanus is the native species
in North America. Phragmites australis (Cav.) Trin. ex Steud. – common reed
-introduced species in North America

See posts on the use of Phragmites stems for culturing Mason Bees here:http://www.gfletcher.ca/?tag=phragmites

 

Sharing our Shoreline

Values and Views
Island Trust Communities
Marine By Nature
The Islands within the Salish Sea have been  shaped by ancient glaciers and modern oceanic forces. Whether you visit the islands seasonally or live here year round, Islanders treasure the marine environment.  The North Pender Local Trust Committee has developed this brochure to introduce you to where sensitive marine habitats exist, how you can recognize them, and what simple steps you can take to ensure our local waters continue to support a vibrant and abundant marine ecosystem.

This PDF has been produced by the North Pender Island Local Trust Committee: Sharing Our shorelines_lowres

IslandstrustContents:

Clean Water
Shoreline erosion
Coastal Bluffs and Shoreline beaches
Marine Riparian Vegetation
Intertidal Habitats
Beach-spawning Forage Fish
Eelgrass habitats
Kelp Forests and Rocky Reefs
Marine shorelines as critical fish habitats

Eel grass Distribution along Parry Bay

Eel grass along our coastline provides a valuable habitat for juvenile fish, crabs and other invertebrates. This week on October 28 and 29th, there was a wind from the North West which resulted in some debris deposition on the beach. The pictures show the eel grass deposits and the map shows the location where it came from  in the shallow water offshore. Eel grass turned up in the strand line almost the full length of the Taylor beach sector:

It is also important to note that the rocks along the beach at 0.5 M tide level just to the north of Taylor road are covered in Surf grassPhylospadix sp.

eelgrassnov1b

View from the south end of Taylor Beach showing Eel grass in the strand line

eelgrassnov1

View from the North end of Taylor Beach showing Eel grass in the strand line

eelgrassbed